Biuletyn PTA nr 8

               -------------------------------------- 
               |                                    | 
               |         Biuletyn PTA nr 8          | 
               |                                    | 
               -------------------------------------- 
 
  Biuletyn informacyjny Zarzadu Glownego Polskiego Towarzystwa Astro- 
  nomicznego (Adres kontaktowy: M. Ostrowski, pta@oa.uj.edu.pl ,
  a w bardzo pilnych sprawach: mio@oa.uj.edu.pl ) 
======================================================================= 
 
Spis tresci: 
 
   I.   Uwagi edytora Biuletynu
   II.  Etat dla astronoma we Fromborku
   III. Osrodki astronomiczne w Polsce
        a. Zaklad Promieniowania Kosmicznego w Instytucie Fizyki w Lodzi
        b. Zaklad Fizyki Slonca CBK PAN we Wroclawiu
   IV.  Nowinki naukowe 
 
======================================================================= 
   I.   Uwagi edytora Biuletynu

Poczynajac od obecnego numeru biuletynu rozpoczynamy prezentacje 
osrodkow astronomicznych w Polsce. Zwrocilem sie do dyrektorow/kierownikow
wszystkich - o ktorych wiem - osrodkow, w ktorych prowadzi sie badania
astronomiczne lub blisko zwiazane z astronomia. Prosze o informacje od  
grup zajmujacych sie taka tematyka, do ktorych moja prosba nie dotarla. 

Zebrana w punkcie IV masa nowinek naukowych nazbierala sie przez wakacje.
Zamieszczam tu wprost kopie informacji odnoszacych sie do astronomii
wybranych z Physics News Update. Gdyby ktos chcial otrzymywac pelna liste
nowosci z tego zrodla, to znajdzie instukcje wpisania sie na liste wysylkowa
na koncu dzisiejszych nowinek.

Readktor Biuletynu nie prowadzi krytycznej oceny czy selekcji pojawiajacych 
sie nowosci. Niemniej niejednokrotnie napotyka sie na informacje o pracach
co najmniej dyskusyjnych. Gdyby ktos mial ochote skomentowac niektore z
tych nowinek - nie dluzej niz w 15 liniach tekstu - to chetnie takie 
komentarze zamieszcze.

======================================================================= 

II.  Etat dla astronoma we Fromborku

Muzeum Mikolaja Kopernika we Fromborku wciaz poszukuje astronoma, ktory
zechcialby zamieszkac na terenie Obserwatorium i pracowac w dziale
Planetarium i Obserwatorium Astronomiczne. Bardzo prosze o przekazanie
mojej prosby do wszystkich czlonkow PTA: jesli ktos zna astronoma
poszukujacego pracy w swoim zawodzie, bardzo prosze o skierowanie go do
Fromborka.

Andrzej S. Pilski
skr. poczt. 6
14-530 Frombork
e-mail (grzecznosciowo): oa@planetarium.olsztyn.pl

======================================================================= 

III. Osrodki astronomiczne w Polsce

a. Zaklad Promieniowania Kosmicznego w Instytucie Fizyki w Lodzi


   Zaklad Promieniowania Kosmicznego,          ul. Pomorska 149/153,
     Katedra Fizyki Doswiadczalnej,                90-236 Lodz,
          Uniwersytet Lodzki                          Poland

* Kierownik Zakladu - Prof. dr hab. Maria Giller
================================================
* Pracownicy zajmujacy sie astrofizyka - 10.
================================================
Prof dr hab. Maria Giller (Badanie promieniowania kosmicznego (PK) 
najwyzszych energii - przyspieszanie PK w wietrze pulsara, propagacja 
w halo galaktycznym, wspolpraca w eksperymencie KASKADE i Auger); 
Dr Wlodzimierz Bednarek (Dyskretne zrodla promieniowania gamma i neutrin. 
Pochodzenie PK.); Dr Lech Kacperski (Badanie PK najwyzszych energii - 
wspolpraca w eksperymencie Auger), Dr Andrzej Maciolek-Niedzwiecki 
(Galaktyczne i pozagalaktyczne zrodla promieniowania rentgenowskiego - 
teoria i analiza danych.); Dr Wojciech Michalak (Przyspieszanie PK w 
wietrze pulsara. Obliczenia widm PK penetrujacych namagnesowany wiatr 
pulsara w Krabie.); Dr Dorota Sobczynska (Poszukiwanie zrodel promieniowania 
gamma - badanie promieniowania Cherenkova od kaskad fotonowych); 
Dr Zbigniew Szadkowski (Badanie PK najwyzszych energii - wspolpraca w 
eksperymencie Auger - budowa aparatury); Dr Wieslaw Tkaczyk (Propagacja w 
polach magnetycznych i oddzialywanie PK, udzial w eksperymentach Auger i 
SPHERA); Dr Tadeusz Wibig (Badanie skladu masowego PK w obszarze 10^15 eV 
(m.in. eksp. KASKADE), badanie PK powyzej 10^17eV); Dr Maria Zielinska 
(Halo magnetyczne wokol Galaktyki, jego powstanie i rozwoj oraz wplyw na 
tory czastek PK najwyzszych energii.)
=========================
* Liczba doktorantow - 3.
=========================
Mgr. Michal Lipski (Przyspieszania PK przez pulsary.); Mgr. Tadeusz Pytlos 
(Badanie skladu pierwotnego PK w zakresie energii 10^15-10^17 eV przy uzyciu 
danych pochodzacych z eksperymentu KASKADE.); Mgr. Andrzej Smialkowski 
(Pochodzenie i propagacja PK najwyzszych energii. Struktura i rozmiar halo 
galaktycznego oraz jego wplyw na propagacje PK.)
=========================
* Publikacje w 1997 roku:  8 (recenzowane) + 18 (nierecenzowane). 

>From bednar@krysia.uni.lodz.pl  Tue Sep 29 17:42:06 1998
------------------------------------------------------------------------
------------------------------------------------------------------------


b. Zaklad Fizyki Slonca CBK PAN we Wroclawiu

Zaklad Fizyki Slonca CBK PAN

Projekty eksperymentalne:

INSTRUMENT:  Fotometr rentgenowski  RF-15I  (na pokladzie Interball
Tail Probe, zrealizowany we wspolpracy z IA AN Czech) dokonuje 
(pomyslnie od trzech lat) pomiarow calkowitego strumienia
rentgenowskiego Slonca w zakresie  2keV-240keV. 
CEL NAUKOWY: Badanie struktury zmiennosci calkowitego promieniowania X 
Slonca w skalach czasu od sekund do dni ze szczegolnym uwzglednieniem 
rozblyskow 

INSTRUMENT:  RESIK -  Spektrometr Bragga z wypuklymi krysztalami 
(przygotowywany do umieszczenia na pokladzie satelity Koronas-F, 
przewidywany termin startu: 1999/2000). Prowadzony  jest montaz  
lotnych podzespolow elektroniki przyrzadu RESIK. Aktualizowane jest 
oprogramowanie procesorow pokladowych. Tzw. testy end-to-end 
przewidywane sa pod koniec 1998 w laboratorium Rutherforda-Appletona, UK 

CEL NAUKOWY: Badanie skladu chemicznego plazmy w koronie Slonca poprzez 
analize widm X w zakresie 0.1 -0.6 nm 

INSTRUMENT:  DIOGENESS - Skanujacy Spektrometr Bragga (rowniez na misje 
Koronas-F)   Wyjustowano, z dokladnoscia do 10 sekund luku plaskie 
krysztaly Bragga w indywidualnych sekcjach spektrometru. Trwa 
kalibracja  detektorow przy uzyciu zrodla radioaktywnego (Fe55). 
Aktualizowane jest oprogramowanie procesorow pokladowych.
CEL NAUKOWY: Badanie ruchow goracej (T>5MK) plazmy w rozblyskach

_______________________________________________________

Zagadnienia teoretyczne:
 
* Badanie skladu chemicznego plazmy w koronie Slonca
* Analiza wlasnosci fizycznych plazmy w strukturach koronalnych 
(w oparciu o dane uzyskane z pokladu japonskiego satelity  Yohkoh).  
* Zastosowania dekonwolucji (problem odwrotny) w fizyce Slonca
 -Metody okreslania funkcji rozproszenia instrumentalnego 
                     (Point Spread Function, "slepe rozpoznanie" )
 -Okreslanie rozkladow rozniczkowej miary emisji
 -Struktura przestrzenna koron gwiazowych
 -Metody maksymalnej entropii, maksymalnej wiarygodnosci
        
Wykorzystywane dane obserwacyjne:

Satelity:
Yohkoh, przyrzady: SXT, HXT, BCS
GOES - fotometry rentgenowskie
SOHO - EIT
TRACE

____________________________________

Sklad osobowy:

samodzielni: 
Marek Siarkowski 
Barbara Sylwester 
Janusz Sylwester - kierownik 

badawczy:
Szymon Gburek
Anna Kepa 
Zbigniew Kordylewski - zca kierownika

inzynierowie - lacznie 3.5 osoby
prac. techniczni - 3 osoby
obsluga - 1.5 osoby
______________________________________

Lokale: wlasny pawilon (300 m^2) na terenie IA UWr + 110m^2 =
najmowanych od IA UWr 
Adres: ul. Kopernika 11
51-622 Wroclaw
______________________________________
Wyposazenie: komora prozniowa do testow aparatury, pracownia =
elektroniczna, etc

Komputeryzacja:
LAN polaczony z siecia metropolitalna laczem FDDI
serwer SunSparc20 64Mb
serwer Linux PC Pentium 128 Mb
serwer Linux PC Pentium 256 Mb

Bardziej wyczerpujace dane zamieszczamy stopniowo na naszej
stronie www. Zapraszam!

+----------------------------+----------------------------+
|     Janusz Sylwester       |   tel: (+4871) 3483238     |
|   Space Research Centre    |   fax: (+4871) 3729372     |
| Polish Academy of Sciences |    or: (+4871) 3729378     |
|   Solar Physics Division   +----------------------------+
|      ul. Kopernika 11      |e-mail: js@cbk.pan.wroc.pl  |
|   51-622 Wroclaw, Poland   | www  : www.cbk.pan.wroc.pl |
+----------------------------+----------------------------+

======================================================================= 

IV.  Nowinki naukowe 

KAONS INSIDE SUPERNOVAS.  K mesons (kaons) are exotic,
short-lived particles of interest not just to high-energy physicists but
also to astrophysicists since the behavior of K's inside dense nuclear
matter can place severe constraints on the dynamics of supernova
explosions and the stability of neutron stars. Recent experiments at
the GSI lab in Darmstadt, Germany (Peter Senger, 011-49-6159-
712-652, p.senger@gsi.de) have looked for K's in violent collisions
between gold nuclei (at a beam energy of 1 GeV/nucleon). In those
collisions, the reaction zone is compressed to about 3 times normal
nuclear density for a very short time, about 5 x 10^-23 sec.   Then,
this nuclear fireball explodes and the gold nuclei disintegrate.
During the hot and dense phase, strange mesons---mostly positively
charged kaons---are created.  These emerge preferentially out of the
plane of the collision; apparently the high density of the reaction
zone offers the kaons  nowhere to escape but up or down.  The
pattern of kaon trajectories indicates that the effective mass of the
kaon is  altered in the extreme nuclear environment, in line with
other experiments. These data have been explained by the
suggestion that anti-kaons "condense" at nuclear densities above 3
times normal nuclear matter density.  As a consequence, one can
predict that a star with a 1.5-2 solar-mass iron core will not
subsequently be able to sustain itself as a neutron star following a
supernova explosion but would instead collapse into a black hole.
(Physical Review Letters, 24 Aug.)

NEAREST EXTRA-SOLAR PLANET. The existence of a planet
around the star Gliese 876, only 15 light years distant from Earth,
was announced this week by planeteer Geoffrey Marcy of San
Francisco State University at a meeting in Victoria, British
Columbia.  The star, whose presence is inferred not from direct
observation but by the wobble it imparts to the star, has a mass
about 1.6 that of Jupiter.  Gliese itself only has a mass of about one
third that of our sun, making it the lightest known star to have a
planet.  The planet circles the star every 61 days at a radius of one
-fifth the Earth-Sun distance.  The discovery was soon confirmed by
other astronomers.  (Science News, 27 June 1998.)  Still other
extra-solar planets (perhaps a half dozen) will be presented by
several observing teams at a meeting a week from now in Santa
Barbara.  (Science NOW, 24 June 1998.)

THE MOON WAS THE FIRST OBJECT OF PURE SCIENCE,
according to Martin Gutzwiller of IBM (gutzwil@watson.ibm.com). 
The Babylonians (c1000 BC) recorded
the comings and goings of the Moon arithmetically without
understanding the geometry.  The Greeks (c200 BC) went further;
they viewed the solar system as sitting in an immense vacuum
surrounded by the fixed stars.  But even the clever Greeks knew
nothing about the underlying physics of the solar system. This fell
to Newton (1687) in the "Principia," and the 18th century
mathematician/physicists such as Laplace.  These thinkers proposed
the principle of universal gravitation and tried to check it out on the
complicated Moon-Earth-Sun system. The study of this oldest of
three-body problems is the true subject of Gutzwiller's article in the
April 1998 issue of Review of Modern Physics. In many physics
problems, the dynamics of two interacting bodies (a planet and a
star or two electrical charges, say) is easy. Add a third body and
things get complicated, indeed chaotic, which is why Newton and
his 18-century followers were largely stumped in their efforts to nail
down the Earth-Sun-Moon dynamics.  Gutzwiller compares the
study of this problem with the history of particle physics: the
amassing of cross sections, branching ratios and other particle
properties (the kinds of things published in tables) corresponds to
the "Babylonian phase," while the advent of the standard model
represents the "Greek phase."  The third, or Newtonian, age, in
which the masses of the quarks and fundamental parameters such as
the fine structure constant will be explained, has not yet arrived.
(For a study of the 3-body problem with ions, see Update 372)


NO END IN SIGHT FOR COSMIC RAY ENERGIES.  Putting
terrestrial accelerators to shame, nature has contrived to imbue
some particles with energies greater than 10^20 electron volts. But
these high-end cosmic ray events---only a mere handful have been
recorded so far---would seem to be at odds with the idea that
interactions with the cosmic microwave background act as a sort of
universal brake, permitting energies not much above 10^19.6 eV
(the so called Griesen-Zasepin-Kuz'min, or GZK, limit).  It didn't
help that for some time there was a relative scarcity of events in the
energy range between 10^19.6 and 10^20 eV.  But new data
reported by the Akeno Giant Air Shower Array (AGASA)
collaboration in Japan (Masahiro Takeda et al., mtakeda@icrr.u-
tokyo.ac.jp) fills in this gap, strengthening the statistical argument
that either the GZK cutoff is not working as planned or that some
unexpected process is producing the highest-energy rays.In other
words, there seems to be no limit to cosmic ray energy.  (Takeda
et al., Physical Review Letters, 10 August 1998.)

A SUN-EARTH CONNECTION EVENT, in which a gust of
plasma particles (a coronal mass ejection) detaches from the Sun
and travels all the way to our planet, where it causes
electromagnetic disturbances and atmospheric auroras, has been
monitored from start to stop for the first time.  The International
Solar-Terrestrial Physics Observatory, a network of ground-based
and satellite detectors, watched the drama play out over the period
January 6-11, 1997. The absence then of notable surface features on
the Sun, such as flares, reinforces the notion that coronal rather
than surface activity is more important for determining near-Earth
space storms.  (Several articles in the July issue of Geophysical
Research Letters.)

THE INTERNATIONAL PHYSICS OLYMPIAD, the annual
competition which sets tough problems to some of the best high
school students in the world, was held this year in Iceland.  As
befits the fire-and-ice locale, some of the problems involved finding
the pressure under an ice cap, determining the results of lava
intrusions into icefields, and the motion of superluminal radio jets,
which can be thought of as the astrophysical equivalent of lava
flows.  The national teams with the most number of gold medals
were China (5), Russia (3), and Vietnam and Iran with one each. 
The U.S. team earned one silver medal (Andrew Lin, Wallingford,
CT) and one bronze (Peter Onyisi, Exeter, NH). (See the upcoming
issue of the Announcer, published by the American Association of
Physics Teachers.)

DO COSMIC RAYS COME FROM QUASARS?  Cosmic ray
particles, which crash into Earth's atmosphere setting up huge
showers of particles detected on the ground, have mysterious
origins.  Looking at the five most energetic events ever recorded
(energies above 10^20 eV), Glennys Farrar of NYU
(farrar@physics.nyu.edu) and Peter Bierman of the Max Planck
Institute for Radio Astronomy in Bonn have found that all the
events are consistent with the cosmic rays having originated in
radio-loud quasars with redshifts in the range 0.3-2.2, and
propagating undeflected and unattenuated in energy through the
intervening thousands of Mpc (Physical Review Letters, tentatively
19 October 1998). If the particles (conventionally assumed to be
protons) are indeed coming from a great distance then how do they
evade the Greisen-Zatsepin-Kuzmin (GZK) cutoff, according to
which cosmic rays with energies above about 10^19.5 eV would be
sapped of their energy through interactions with cosmic microwave
background photons if they traveled much more than 20 Mpc
(roughly 60 million light years)?  Such interactions would typically
produce pions and electron-positron pairs. Some speculate that the
high-energy particles are not protons at all but some exotic new
particle.  One explanation is that energetic neutrinos make the long
cosmic journey and then annihilate relatively near the Earth with
massive dark-matter neutrinos to create the cosmic ray primary
particle.  Farrar herself is partial to the notion that the primary is
the neutral S particle, an amalgam of three quarks and a gluino (one
of the shadow particles associated with supersymmetry theory; see
Updates 86 and 265).  With a mass  two or three times that of the
proton, the S would not as readily produce pions in interactions
with microwave photons, thus ensuring for itself a more robust
passage through the cosmos. Thus the highest energy cosmic rays
could be produced at cosmological distances but still survive the trip
to Earth.  (Physics Today, October 1998.)   Future measurements
determining whether the primary is a photon or hadron will help
decide the question of whether the correlation between cosmic rays
and quasars holds up.

THE 25 GREATEST ASTRONOMICAL FINDINGS of all time,
according to the editors of Astronomy magazine (October 1998) are
as follows: the discovery of quasars (1963); the cosmic microwave
background (1965-66); pulsars (1967); Galileo's observations of the
phases of Venus, Jupiter's moons, and craters on the moon (c
1609); extrasolar planets (1992); supermassive black holes (early
1990s); Newton's Principia, formulating the mathematics of our
heliocentric system (1687); the discovery of Uranus (1781); the first
known asteroid (1801); discovery of Pluto (1930); Neptune (1846);
spectroscopic proof that nebulae are gaseous in  nature (1864);
recognition of galaxies beyond our own (1923); the advent of radio
astronomy (1931-32); studies of globular clusters help to map the
Milky Way (1918); cometary explosion over Siberia (1908); an
accurate measurement of the speed of light (1675); Southern
Hemisphere celestial objects cataloged (1834-38); Cepheid-variable 
period-luminosity relationship worked out (1912); Copernicus' De
Revolutionibus sets forth the heliocentric system (1543); Laplace's
theory on how the solar system formed (1796); a transit of Venus
suggests Venus has an atmosphere (1761); the Hertzsprung-Russell
diagram for understanding how stars age (1913); scheme for
classifying star types (1890); the use of parallax for finding a star's
distance from Earth (1838).

THE EXTRASOLAR PLANET PARADE continues with the
discovery of two new planets with unique features.  As before,
astronomers Geoffrey Marcy (San Francisco State) and Paul Butler
(Anglo-Australian Observatory) have inferred the presence of the
planets from their observed influence on the companion star.  One
of the new objects orbits its star (HD187123) in a mere three days
in an orbit 9 times closer than Mercury's around our sun. The other
new planet has a very Earth-like orbit of 437 days around star
HD21027.  This comes as a reassurance to those who were
beginning to wonder whether Earth was an anomaly; all previously
discovered extrasolar planets have had orbits much smaller or much
larger than Earth's. (San Francisco State University press release,
23 September 1998.)

MILKY WAY IN THE LABORATORY?  A plasma with a
spiral-shaped pattern of particle density, similar to that of the Milky
Way galaxy, has been created stably in the laboratory, supporting
the possibility that fluid dynamics effects rather than gravitational
ones may be responsible for our home galaxy's structure.  Injecting
a hot argon plasma (rotating at supersonic speeds) into a cold,
stationary argon gas, researchers in Japan (Takashi Ikehata,Ibariki
University,  ikehata@ee.ibaraki.ac.jp) observed a spiral-armed
structure (with low-density halos of charged particles) that persisted
for as long as they kept rotating the plasma. The vortices that
typically appear in such hot plasmas became spirals because of the
outward "centrifugal" forces introduced by the rotation.  Curiously,
the spiral structure was not observed to form in the absence of the
stationary gas, suggesting that the fluid dynamics interactions
between the gas and plasma are central to the spiral formation
process.  This experiment intensifies the fascinating (and still
undecided) question of whether similar interactions occur between
hot, bright stars (corresponding to the plasma) and gas clouds
(analogous to the stationary gas) to form spiral galaxies.    (Ikehata
et al., Physical Review Letters, 31 August 1998.)

A TRAVEL GUIDE TO EUROPEAN SCIENCE would proceed
from London to Paris to Moscow to Amsterdam.  These cities,
according to Institute of Scientific Information (ISI), were
responsible for the greatest number of published scientific papers
during the period 1994-1996.  If one ranks by per-capita output the
order of top European cities becomes Cambridge, Oxford, and then
Geneva/Lausanne.  In the field of physics the leaders in producing
papers are Moscow, Paris, Geneva, St. Petersburg, and Warsaw. 
Narrowing further to condensed matter physics, the order begins
with two Russian cities, Moscow and St. Petersburg, followed by
Paris, Berlin, and Stuttgart. (Science, 21 August 1998.)

THE FIRST SNAPSHOT OF AN EXTRASOLAR PLANET?  The
existence of extrasolar planets around several stars has been inferred
from the wobble in the stars' emissions, but the planets themselves
have not been seen amid the glare of the parent stars. Now, the
Hubble Space Telescope has taken a picture of an object (named
TMR-1C) that might, depending on how the data is interpreted, be
either a brown dwarf star or a protoplanet (perhaps with a mass
several times that of Jupiter). The object, about 450 light years
away and glowing in infrared light, was glimpsed at all because it
has apparently been ejected from a nearby binary-star system, and
therefore stands apart from any stellar brilliance.  This and the
object's youth (it might be only 100,000 years old) might redirect
thinking on how gas giant planets form.  According to NASA
scientist Edward Weiler, "If the planet interpretation stands up to
the careful scrutiny of future observations, it could turn out to be
the most important discovery by Hubble in its 8-year history." 
(NASA press release, 28 May 1998.)

A PULSAR WITH A MAGNETIC FIELD OF 8 x 10^14 GAUSS
has been studied with the Rossi X Ray Telescope (RXTE). 
Referred to as a soft gamma-ray repeater (SGR1806-20) since it is
a source of recurring bursts of low-energy gamma-rays (whereas
gamma ray bursters don't emit higher energy gammas and don't
repeat), this neutron star rotates with a period of about 7.4 seconds. 
The size of the magnetic field, 100 times larger than that of
ordinary radio pulsars, is deduced from the rotation period and the
slowdown of that rotation.  Such a highly magnetized neutron star
has been called a "magnetar."  The huge field (the largest magnetic
field ever measured) puts the star's surface under great stress. 
According to one theory, the observed high energy bursts of
radiation come about when the neutron star's crust cracks open. 
(C. Kouveliotou et al., Nature, 21 May 1998.)

PHYSICS NEWS UPDATE subscription reminder: To put yourself
on our distribution list automatically, send a message to
listserv@aip.org (not to physnews@aip.org) and specify either "add
physnews" or delete physnews" to subscribe or unsubscribe.