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We present results for magnetohydrodynamical simulations of evolving neutron
stars in the first moments of its lifetime. We study the poloidal field instability
and how the magnetic field components change with time. We find that although
our final field does not reach a stable equilibrium, it settles to a twisted torus ge-
ometry with a dominant poloidal component and a weaker toroidal field reaching
10% of the total magnetic energy at 40 ms. However, at much later evolution
times (t ∼ 450 ms), the toroidal field reduces to 1% of the total magnetic energy.

1 Introduction

Neutron stars (NS) are extremely dense compact objects exhibiting the strongest
magnetic fields known to date in the universe. The surface field strength is typically
1012 G for ordinary NSs and above 1015G for magnetars. Despite such estimates
for the strength of the magnetic field, its structure is not completely understood.
Polarimetric studies of pulsar radio emission have enabled us to probe the shape
of pulsar magnetospheres. These observations indicate that magnetism is predomi-
nantly dipolar (Chung & Melatos, 2011a,b). NICER has recently observed in X-rays
that the field at the surface is not an aligned dipole, but rather an intricate multi-
polar structure (Bilous et al., 2019).

In addition to the external field topology, observations of the internal field topol-
ogy are even more difficult, but are thought to be fundamental to understanding
the nature and strength of electromagnetic and gravitational wave emission from
the star (Thompson & Duncan, 1996; Cutler, 2002). In fact, as gravitational-wave
astronomy advances, it may be possible to detect magnetic field topologies by us-
ing gravitational waves (Lasky & Melatos, 2013). Therefore, obtaining a theoretical
understanding of the interior field as well as exploring its nature through numerical
simulation is of great importance.

A number of studies have investigated the balance of the Lorentz force and grav-
ity within magnetic main sequence stars and white dwarfs, e.g. for the axisymmetric
case by (Braithwaite & Nordlund, 2006) and a similar non-axisymmetric study by
(Braithwaite, 2008). For the NS case, equilibrium solutions in Newtonian gravity
were obtained by Haskell et al. (2008); Lander & Jones (2009) and Sur et al. (2020)
and in general relativity by Kiuchi & Yoshida (2008); Ciolfi et al. (2010) and Sur
et al. (2022). A purely poloidal field undergoes the so-called “Taylor instability” and
is thus unstable. The instability in NSs has been studied numerically in general rel-
ativity by Ciolfi et al. (2011); Lasky et al. (2011) and Ciolfi & Rezzolla (2012). They
find that an initially poloidal field becomes unstable at a Alfvén crossing timescale,
and toroidal components of the field emerge. Often, equilibrium configurations are
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approximated by a twisted-torus configuration, in which a toroidal component stabi-
lizes the poloidal field (Braithwaite & Nordlund, 2006) or a tilted-torus configuration
(Lasky & Melatos, 2013).

There are still questions, however, as to how the field will ultimately develop.
Specifically, while it is clear that a mixed field is necessary, the relative strength of
the components cannot be determined from the study of equilibrium configurations
since these configurations typically allow for some degree of flexibility in adjusting
this parameter (Glampedakis & Lasky, 2016). Models can thus be obtained with
toroidal fields that are from a few percent (Lander & Jones, 2009) to more than an
order of magnitude stronger than those with polioidal components (Ciolfi & Rezzolla,
2013).

In view of the fact that most hydromagnetic instability studies have focused on
setting up equilibrium configurations based on a specific geometry, it is essential to
investigate the non-linear evolution of NSs for a variety of topologies and to define
a barotropic EOS, not only to determine whether the field is unstable, but also
what the final state determined by the non-linear saturation of the instability will
be. These issues are crucial to grasp, since the field configuration of a NS plays a
crucial role in attempts to determine the mass and radius of the star from X-ray
observations, and in determining the gravitational wave emission properties of the
system (Lasky, 2015).

Here, we provide nonlinear magnetohydrodynamical (MHD) and General Rela-
tivistic MHD simulations of magnetised NSs to explore the instability, the global
evolution, and the final configuration of the magnetic field. Neither superfluidity
nor superconductivity are considered in modeling the star’s core or crust. We made
these choices partly for convenience, but also due to the fact that instabilities on dy-
namical time scales determine the field’s configuration shortly after the NS is born.
Various setups and initial conditions are explored, allowing for fields with initially
stronger poloidal or toroidal components.

2 Method

We use the publicly available code PLUTO (Mignone et al., 2007) to solve the New-
tonian MHD equations and the Athena++ code (White et al., 2016) to solve the
GRMHD equations.

The MHD equations have closure with a barotropic EOS of p = p(ρ), which we
assume to be an n = 1 polytrope. Using a static grid, we calculate the pressure using
the EOS and the density (thereby maintaining the barotropy of the system), in a
spherical coordinate system in three dimensions. We have a resolution of ∆r ∼ 0.19
km inside the star, while we have a resolution of ∆r ∼ 0.25 km in the atmosphere.
Using a piece-wise parabolic function, the interpolations are accurate to second order
in space. We use Runge Kutta 3 (RK3) time stepping with a Courant-Friedrichs-
Lewy limit of 0.3. For computing fluxes, we use a Harten-Lax-van Leer (HLL)
Riemann solver. By using the hyperbolic divergence cleaning method, the solenoidal
constraint ∇ ·B = 0 is maintained. The gravitational potential of a star in different
regions is calculated analytically and provided as an input, and it does not change
with time. Density distribution of stars is, however, only weakly affected by magnetic
fields, which is generally a good approximation (Haskell et al., 2008).
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Fig. 1: Magnetic field lines from MHD simulation (top) meridoinal view (bottom)equatorial
view. The colorscale shows the strength of toroidal field in units of 1015 G. (figure from
Sur et al. (2020))

3 Results

The evolution of the magnetic field occurs on a characteristic timescale associated
with the system, called the Alfvén crossing time, which is given by

τA =
2R

√
4π〈ρ〉
〈B〉

, (1)

where 〈..〉 represents volume averaged quantities. For 〈B〉 ∼ 4.5× 1015 G, we obtain
τA ∼ 12 ms. Theoretically, we should expect the field to rearrange itself after one
Alfvén timescale, as we shall see it indeed does in our simulations. We will discuss
two main issue here. First is the poloidal field instability and the growth of the
toroidal component. And second is the energies of the poloidal and toroidal field,
and conservation of energy in the star.

3.1 Poloidal field instability

Our purely poloidal field is unstable and this gives rise to a toroidal component
inside the star. We plot the two-dimensional projections of the magnetic field lines
on the x-y plane (equatorial view) and the x-z plane (meridional view) in Fig. 1
with the title representing the different time stamps. The strength of the toroidal
field in Gauss is given by the colorbar. In the beginning of evolution, the field
lines’ cross-sectional area first changes, which corresponds to the so-called varicose
mode. Following this is the transverse displacement of the fluid along the neutral
line, which leads to the development of the “kink” instability (Lander & Jones, 2011;
Lasky et al., 2011).

In the system, the initial axisymmetry is replaced by a nonaxisymmetric struc-
ture when this instability reaches saturation. The toroidal field grows exponentially
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Fig. 2: Poloidal and toroidal energies at (left) early times from MHD setup (taken from
Sur et al. (2020)) (right) late times with GRMHD evolution.

from its initial state until t ∼ 1 Alfvén time are observed both inside the star and
outside it. It can be seen that the strength of the toroidal field at this point be-
comes comparable to the poloidal field (see middle panel of the Figure 1). The
field lines create vortex-like structures in the equatorial view (see right panel) due
to the conservation of magnetic helicity. From t = 12 ms, the evolution proceeds
with nonlinear rearrangement of the field, including not only the closed field lines
but also the whole star. A slow evolution of the field occurs in which the interior
closed field lines move outward, losing energy in its toroidal component. This will
be discussed in more detail when we discuss the energies of the poloidal and toroidal
components in the following section. Changing the magnetic field also expels matter
from the star, but the change in rest mass (∆Mrest ≈ 10−5M�) is much slower than
the change in magnetic field energy during the first Alfvén crossing. Field dynamics
depend on the strength of the magnetic field, as stronger fields have a more violent
dynamic, and vice versa (Ciolfi & Rezzolla, 2012). As a result of our simulation, we
concluded that the geometry of the magnetic field has changed radically and that it
has lost all traces of its original configuration. Even though we do not have resis-
tivity, there is numerical dissipation from our grid, and it is difficult to determine if
the post-instability configuration is stable. Meanwhile, the time scale on which the
rest mass of a star is changing is much longer than the instabilities of the magnetic
field.

3.2 Energies

We compute various energy integrals, such as the poloial and toroidal energies, and
the total energies in terms of kinetic, magnetic, and enthalpy. We show two results
for the evolution of magnetic field: first with MHD simulations for 40 ms, and second
with GRMHD simulations for 450 ms. Figure 2 (left) shows the evolution of poloidal
and the toroidal magnetic field energies normalized by the total magnetic field energy
at each time for the entire run of a simulation in which the initial condition was
a purely poloidal field. The toroidal component initially gains strength from the
initial perturbation we gave. After 3 ms, the poloidal field becomes unstable and
the toroidal component undergoes an exponential growth with its strength becoming
comparable to the poloidal component. This exponential growth happends during
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Fig. 3: The kinetic, magnetic, enthalpy and the total energies as a function of Alfvén
crossing times (left). Power of different multipoles of the magnetic field with the MHD
evolution (right). The figure is taken from Sur et al. (2020)

.

t ∼ 1Alfvén timescale, where the toroidal energy becomes Etor ∼ 0.1Emag. In the
longer runs, as the system loses magnetic energy, the toroidal component becomes
weaker and reaches approximately 1% of the total magnetic energy (Fig. 2 right
panel). In this evolution, the toroidal field appears to reach a stable equilibrium
with energies similar to those derived from solving the Grad-Shafranov equation for
example, in Lander & Jones (2009); Armaza et al. (2015) and Sur & Haskell (2021).

In order to investigate the energetics of the star, the total energy is subdivided
into four components including kinetic, magnetic, rest mass, and enthalpy. We find
that the total energy remains conserved, however, the magnetic energy decays. To
understand the loss of magnetic energy, we plot δE for the individual energy com-
ponents (except the rest mass as it remains conserved in our simulations) inside the
star and look at their behavior with time. First, the change in kinetic energy from
its initial value is negligibly small. Second, the magnetic energy decreases and this
loss is independent of the resolution of our simulations. More than 90% of the initial
magnetic energy is lost. A major portion of it goes into heating the interior of the
star as we can see from the rise in enthalpy till ∼2TA where TA is defined in Sur
et al. (2022). The enthalpy loss is dependent on the grid resolution and reduces by
a factor two when the resolution is increased of the same factor. Higher resolutions
than those considered here would be needed to minimize numerical dissipation ef-
fects. These results strongly depend on the outflow boundary conditions used in our
simulations; however, realistic NS has a crystalline-solid crust, which would prevent
any dissipation of magnetic energy outside the star and can significantly influence
our simulation results.

We also decompose the magnetic field vector into vector spherical harmonics and
calculate the power for each of the multipoles ` ∈ (0, 1, 2, 3). From figure the right
panel of Fig. 3, we see that although initially the field is dipolar, at late times, a
complex multipolar structure emerges close to the surface.
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4 Discussions

In this paper we have presented the results of three dimensional MHD and GRMHD
simulations of magnetic field configurations in NSs. We do not consider the effect
of the crust, or of superfluidity in the interior. Our results are thus applicable to
the first few hours of life of the star, after differential rotation is dissipated. The
field configurations are then ‘frozen in’ as the star cools, and may be used as initial
conditions for longer term simulations, on timescales of 103 − 105 years, Overall we
find that a NS with a given inferred dipolar field strength far from the surface, is
likely to harbour an interior toroidal component with an average energy of roughly
20% of the poloidal component, but that stronger toroidal fields are unstable and
cannot be sustained. We can conclude that the final configuration in our simulations
is not a “strict” equilibrium but rather a “quasi-stationary” equilibrium.
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