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The CaFe Project involves the study of the properties of the low ionization emis-
sion lines (LILs) pertaining to the broad-line region (BLR) in active galaxies.
These emission lines, especially the singly-ionized iron (Fe 11) in the optical and
the corresponding singly-ionized calcium (Ca II) in the near-infrared (NIR) are
found to show a strong correlation in their emission strengths, i.e., with respect
to the broad Hf emission line, the latter also belonging to the same category
of LILs. We outline the progress made in the past years that has developed
our understanding of the location and the efficient production of these emission
lines. We have yet to realize the full potential of Ca I1 emission and its connec-
tion to the black hole and the BLR parameters which can be useful in - (1) the
classification of Type-1 active galactic nuclei (AGNSs) in the context of the main
sequence of quasars, (2) to realize an updated radius-luminosity relation wherein
the inclusion of the strength of this emission line with respect to HB can be an
effective tracer of the accretion rate of the AGN, and, (3) the close connection
of Ca 11 to Fe 11 can allow us to use the ratio of the two species to quantify the
chemical evolution in these active galaxies across cosmic time. In this paper,
we use our current sample and utilize a non-linear dimensionality reduction tech-
nique - t-distributed Stochastic Neighbour Embedding (tSNE), to understand the
clustering in our dataset based on direct observables.

1 The CaFe Project - past, present and future

The CaFe Project involves the study of the properties of the low ionization emission
lines (LILs) pertaining to the broad-line region (BLR) in active galaxies. These
emission lines, especially the singly-ionized iron (Fe 11) in the optical (4434-4684
A blend) and the corresponding singly-ionized calcium (Ca 11) in the near-infrared
(NIR, the Ca 11 is seen as a triplet A8498, \8542 and A8662 A and collectively
called CaT) are found to show a strong correlation in their emission strengths, i.e.,
with respect to the broad Hf emission line, the latter also belonging to the same
category of LILs (see Figure . The origin of this correlation is attributed to the
similarity in the physical conditions necessary to emit these lines - especially in
terms of the strength of the ionization from the central continuum source and the
local number density of available matter in these regions. We refer the readers to
Panda et al| (2020); Pandal (2021)); [Martinez-Aldama et al.| (2021b)) for a detailed
overview on the issue wherein we discuss the robustness of the correlation recovered
both from the observational and modeling standpoints. The combined importance
of the two species has also been recognized in addition to our findings that the CaT
being an effective proxy serves to be a better alternative to Fe 11-based Rug — L5100
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relation (Martinez-Aldama et al., [2021a)). This is crucial to address the scatter
seen due to the inclusion of newer measurements and sources in the Ryg — L5100
relation specifically showing a deviation from the classical two-parameter Rug—Ls100
relation (Bentz et all [2013)). A large subset of these sources are noted to belong
to the class of Narrow-line Seyfert Type-1 galaxies (NLS1s) that typically show
shorter time delays, and hence a smaller radial distance of the onset of the BLR from
the central continuum source (Rprr) is deduced for these sources. These smaller
Rprr values show a marked deviation from the expected Ryg — L5100 relation, and
addressing this problem is key to our understanding of how these systems evolve
and if viable corrections to the classical relation can be made to utilize AGNs as
“standardizable” cosmological candles (Czerny et al. [2021)). In addition to this
issue, we find in |Martinez-Aldama et al.| (2021b)) that the ratio of the CaT to Fe 11
(justifying the project name - CaFe) is an effective tracer of the chemical evolution
of AGNs and can help us probe the co-evolution of the AGN and its host galaxy in
more detail. Also, our analysis in Martinez-Aldama et al. (2021b]) has shown the
potential of recovering the main sequence for quasars using spectral properties of NIR
emission lines, i.e. O 1 A8446 and CaT. The main sequence of quasars (Boroson &
Greenl, [1992; [Sulentic et al., 2000; [Marziani et al., |2018]) is an outcome of a classical
linear dimensionality reduction technique - principal component analysisﬂ (PCA),
and the primary eigenvector relates to the correlation seen between the full-width
at half maximum (FWHM) of broad HB and the optical Fe 11 strength (i.e., the
RFO“ED' As the correlation is drawn using broad emission lines seen in a quasar
spectrum, this applies to only Type-1 AGNs - those where the distant observer has
an almost uninterrupted view of the central engine (i.e. the accreting supermassive
black hole) and its immediate surroundings, e.g. BLR that gives rise to these broad
emission lines. In Martinez-Aldama et al| (2021b)), we find that the FWHM(O 1)
recovered for our sample shows an almost 1-to-1 relation with FWHM(HS). This
result compounded with the strong Rper-Rcat relation suggests the presence of a
similar correlation between the FWHM(O 1) and Rcar. This is shown in Figure 1
of Martinez-Aldama et al.| (2021b).

2 How to assess high-dimensional data properly

Visualization of high-dimensional data is crucial to improve our understanding of
how a system behaves, especially factoring in the importance of observables that
drive the dataset. Datasets in astronomy are no different and with the huge influx
of data that is already upon us, more intelligent classification and clustering schemes
are needed, in addition to making them human-readable. We thus rely upon dimen-
sionality reduction techniques - where an n-dimensional dataset can be transformed
and represented in a hyper-plane consisting of only a few hyper-dimensions. Di-
mensionality reduction aims to preserve as much of the significant structure of the
high-dimensional data as possible in the low-dimensional map.

In the case of principal component analysis (PCA, see |Jollifle, [2011)), a classical
linear dimensionality reduction techniqueﬂ these hyper-plane dimensions are con-

lwherein the dataset is transformed to be represented in sets of eigenvectors and their corre-
sponding eigenvalues

2Rper1 is the ratio of the optical Fe 11 emission within 4434-4684 A normalized to the Hp emission,
and, Rcar is the ratio of the NIR CaT emission normalized also to the same Hf emission.

30ver the last few decades, a variety of techniques for the visualization of such high-dimensional
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Fig. 1: Rperi-Rear relation shown for our sample (in log-scale). Black, red, green and
magenta dots correspond to [Persson| (1988)), [Martinez-Aldama et al| (2015alb)), Marinello|
let al|(2016) and [Marinello et al.| (2020) samples, respectively. Black dotted lines mark the
confidence intervals at 95% for a random 1000 realizations (dark gray lines) of a bootstrap
analysis. Light gray shaded region marks the corresponding 95% prediction intervals bands.
Figure courtesy: [Martinez-Aldama et al.| (2021b).

structed using singular value decomposition (SVD), such that the axes generated
are orthogonal to each other. The original dataset is then represented in this hyper-
plane where they are organised based on their respective contributions to these new
dimensionsﬂ But, there is a major drawback with PCA or PCA-based methods,
i.e. the new axes are a linear combination of original observables. Thus, no cross-
terms are involved when constructing the new dimensions. Therefore users of PCA
need to be aware of this assumption and refrain from injecting datasets where prior
inter-dependencies are noticed. Yet, PCA remains one of the most sought after
methodologies, primarily due to its easy-to-understand algorithm.

For datasets with inter-dependent observables, one proceeds to look for other
methods, for example, t-distributed Stochastic Neighbour Embedding (tSNE,
Maaten & Hinton, 2008) which is a non-linear dimensionality reduction technique
that aims to preserve the local structure of data. The foundation of tSNE is based on

data have been proposed, many of which are reviewed by |[Ferreira de Oliveira & Levkowitz| (2003))
and |Baron| (2019)).

4In [Martinez-Aldama et a1.| dQOleD, we explored the observational properties of our sample and
performed a principal component analysis, where 81.2% of the variance can be explained by the
first three principal components drawn from the full width at half maximum (FWHMs), continuum
luminosity of the sources, and the equivalent widths (EWSs) of the emission lines considered. The
first principal component (PC1) is primarily driven by the combination of black hole mass and
luminosity with a significance over 99.9%, which in turn is reflected in the strong correlation of the
PC1 with the Eddington ratio. We also discuss the biases introduced in PCA due to the use of
input observables that are either derived from existing observables, i.e. black hole mass is derived
from two basic observables, FWHM of the broad emission line observed in the AGN spectrum and
distance of the BLR from the continuum source.
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minimizing a cost function that is dependent on the nearness of a data point from a
defined cluster center. The algorithm orders the dataset by assigning a rank to each
data point and then organizing them on the hyper-plane. In this way, the dataset is
represented based on similarity which is estimated based on the input observables for
each data point. tSNE employs a heavy-tailed distribution in the low-dimensional
space to alleviate both the crowding problem and the optimization problem (see
van der Maaten & Hinton) [2008, for a detailed overview of the technique).

3 Methods and Analysis

Our analysis is based on the observational properties of HB, optical Fe 11 and
NIR CaT triplet collected from |Persson| (1988)), Martinez-Aldama et al.| (2015a,bl),
Marinello et al. (2016)) and Marinello et al.| (2020). The full sample includes 58
objects with 42.5 < log Lopt (5100 A) < 47.7 at 0.01 < z < 1.68. Table Al in
Martinez-Aldama et al. (2021b)) reports the properties of the each source in the
sample such as redshift, optical (at 5100 A) and NIR (at 8542 A) continuum lumi-
nosity, the flux ratios Rperr and Rear, as well as the equivalent width (EW) and
Full-Width at Half Maximum (FWHM) of Fe 11, HB, CaT and O 1 (see Table Al in
Martinez-Aldama et al.|2021b).

In this work, we utilize the PYTHON implementation of the tSNEﬂ to analyze the
clustering in our sample accounting for the aforementioned spectral properties for
each source, specifically, the Lop, FWHMs of Fe 11, H3, CaT and O 1, and the
EWs for the same set of emission lines. This prescription of choosing only the direct
observables was shown to provide clear evidence of the primary driver of our sample
reducing the biases arising from inter-dependencies due to the inclusion of derived
parameters, like BH mass or Eddington ratio (Lpol/Lrda). The 2D hyper-plane
generated using the tSNE is shown in Figure 2l The sources are categorized based
on the papers that reported them.

4 Results & Conclusions

In this work, we utilize a non-linear dimensionality reduction technique - tSNE, to
understand better the organization of our current sample from our CaFe Project.
The preliminary testing has revealed a dichotomy in our sample when visualized
in a 2D tSNE-based hyper-plane - the overall sample is composed of two clusters
driven by their observed optical luminosities and black hole masses (and hence, their
Eddington ratios). The analysis has also revealed the movement of sources in this
hyper-plane which we observed more than once. As was found earlier from our
direct correlation in |Panda et al.| (2020)); Martinez-Aldama et al.| (2021b)), the source
PHL1092 stands out as an outlier. Here, in addition to that, we notice that this
source doesn’t belong to either of the clusters. This can be due to the prominence
of strong soft X-ray excess seen in its spectrum. This may explain the recovery of
high values for Rper (= 2.576+0.108) and Rear (= 0.83940.038) for this source.
Another source, Mrk335, is also of potential interest, as it seems to have jumped
to the high-luminosity cluster (red and blue dots) albeit belonging to a sub-sample
whose remaining sources are located in the low-luminosity cluster (green and black

Shttps://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE. html
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Fig. 2: Two-dimensional hyper-plane generated using the tSNE. Green, red, blue, black
and cyan dots correspond to P88 - [Persson| (1988)), MLMA+15a, MLMA+15b - [Martinez-
[Aldama et al| (2015alb)), MM+16 - Marinello et al. (2016)), and, MM+20 - Marinello et al.
(2020) samples, respectively. The dashed ellipses are shown for illustrative purposes to
highlight the dichotomy in the sample and mark sources of interest. The green arrows
mark the movement of the five sources which were observed twice at different epochs.
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Fig. 3: Fe 11/CaT versus Eddington ratio (Lvoi/Lrdd) for the sources in our sample. The
color-scale represents the primary tSNE hyper-plane axis, X. The arrow marks the increase
in the Lboi/Lrdd. Sources at extremes are marked.

dots).
We explore further the results from the tSNE analysis which reveals a strong
and clear connection between the ratio Fe 11/CaT (this ratio has been studied in
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Martinez-Aldama et al.| (2021b) as a tracer of the chemical evolution in galaxies
hosting accreting super-massive black holes) and the Eddington ratio (Lye1/LEdd)
for the sources in our sample - sources with lower Fe 11/CaT belong to the high-
luminosity class of objects that typical have relatively large L1/ Lraq (see Figure
3). This result needs to be tested more carefully.

The advent of newer, deeper surveys including the James Webb Space Telescope
(JWST,|Gardner et al.2006) and Maunakea Spectroscopic Explorer (MSE, Marshall
et al.[2019), will lead to populating our sample by orders of magnitudes and firmly
confirming these aforementioned avenues.
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