Mode Identification in Rapidly Rotating Stars from BRITE Data

Mode Identification in Rapidly Rotating Stars from BRITE Data

Daniel R. Reese, Marc-Antoine Dupret and Michel Rieutord

Apart from recent progress in Gamma Dor stars, identifying modes in rapidly rotating stars is a formidable challenge due to the lack of simple, easily identifiable frequency patterns. As a result, it is necessary to look to observational methods for identifying modes. Two popular techniques are spectroscopic mode identification based on line profile variations (LPVs) and photometric mode identification based on amplitude ratios and phase differences between multiple photometric bands. In this respect, the BRITE constellation is particularly interesting as it provides space-based multi-colour photometry. The present contribution describes the latest developments in obtaining theoretical predictions for amplitude ratios and phase differences for pulsation modes in rapidly rotating stars. These developments are based on full 2D non-adiabatic pulsation calculations, using models from the ESTER code, the only code to treat in a self-consistent way the thermal equilibrium of rapidly rotating stars. These predictions are then specifically applied to the BRITE photometric bands to explore the prospects of identifying modes based on BRITE observations.

Proceedings of the Polish Astronomical Society, vol. 8, 80-87 (2018)

Download full article as PDF file: