Probing planet-star tidal interactions with precise transit timing of hot Jupiters. Preliminary results from 2022/2023.

Jan Golonka Supervisor: dr hab. Gracjan Maciejewski, prof. UMK

12.09.2023

Tidal interactions

	_		
2.0	(\circ)	0.0	100
Jan	CIU.	юш	٨d

TTV 2022/2023

12.09.2023

æ

<ロト < 四ト < 三ト < 三ト

2/13

Tidal interactions

2/13

Tidal interactions

Wikipedia, Krishnavedala

3/13

イロト イヨト イヨト

Hot Jupiters

Mass - Period Distribution

15 Jun 2023 exoplanetarchive.ipac.caltech.edu

Jan Golonka

Inertial waves

∃ →

э

- Inertial waves
- Expected to be strong in evolved stars

- Inertial waves
- Expected to be strong in evolved stars

• Gravity waves

- Inertial waves
- Expected to be strong in evolved stars

- Gravity waves
- Expected to be strong in stars with radiative core

TTV 2022/2023

- Inertial waves
- Expected to be strong in evolved stars

- Gravity waves
- Expected to be strong in stars with radiative core

Quantified with Q - tidal quality factor

Gravity waves

Barker, 2020

- ∢ ⊒ →

э

900

6/13

・ロト ・日下・ ・日下

Gravity waves

Barker, 2020

Barker, 2020

12.09.2023

A B > A B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

э

∃ →

Theory

Predicted values of Q for individual systems.

イロト イヨト イヨト

Theory

Predicted values of Q for individual systems.

Observations

Transit timing variations.

- 4 回 ト 4 三 ト 4 三 ト

Theory

Predicted values of Q for individual systems.

Observations

Transit timing variations.

▲ 同 ▶ → 三 ▶

Maciejewski, 2018

→ ∃ →

Theory

Predicted values of Q for individual systems.

Change in Tc

$$T_{shift} = \frac{-27\pi}{4} Q^{-1} \frac{M_p}{M} \left(\frac{R}{a}\right)^5 T_{dur}^2$$

Observations

Transit timing variations.

Maciejewski, 2018

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Theory

Predicted values of Q for individual systems.

Change in Tc

$$T_{shift} = \frac{-27\pi}{4} Q^{-1} \frac{M_p}{M} \left(\frac{R}{a}\right)^5 T_{dur}^2$$

Observations

Transit timing variations.

Maciejewski, 2018

Detection Direct comparison with theory: $Q = -\frac{27}{2}\pi \left(\frac{M_p}{M_{star}}\right) \left(\frac{a}{R_{star}}\right)^{-5} \left(\frac{dP_{orb}}{dE}\right)^{-1} P_{orb}$

7/13

通 ト イ ヨ ト イ ヨ ト

Theory

Predicted values of Q for individual systems.

Change in Tc

$$T_{shift} = \frac{-27\pi}{4} Q^{-1} \frac{M_{p}}{M} \left(\frac{R}{a}\right)^{5} T_{dur}^{2}$$

Observations

Transit timing variations.

Maciejewski, 2018

Detection Direct comparison with theory: $Q = -\frac{27}{2}\pi \left(\frac{M_p}{M_{star}}\right) \left(\frac{a}{R_{star}}\right)^{-5} \left(\frac{dP_{orb}}{dE}\right)^{-1} P_{orb}$

Lack of detection

Lower limits on Q.

Jan Golonka

12.09.2023

System sample

System	M _* [Msol]	First obs	Q _{IGW}	Tshift [s]	Mcrit
HAT-P-7	1.51	2008	8E+4	-260	yes
WASP-74	1.48	2012	8E+4	-43	no
XO-3	1.41	2004	2E+5	-74	no
KELT-1	1.34	2011	5E+6	-151	no
KELT-16	1.21	2015	4E+5	-207	no
HAT-P-53	1.09	2011	6E+5	-6	yes
HAT-P-36	1.02	2010	2E+5	-96	no
WASP-135	0.98	2014*	5E+5	-9	no
TrES-3	0.93	2007	4E+5	-28	no
Qatar 4	0.90	2015	1E+6	-2	no
TrES-5	0.89	2009	6E+5	-11	no
Qatar 2	0.74	2011	4E+5	-22	no

12.09.2023

イロト イポト イヨト イヨト 二日

Data sources

Literature

- Taking available lightcurves, not Tc values
- Only full lightcurves, with points before and after transit
- PNR < 2.0 ppth/min

▲ 同 ▶ → 三 ▶

Data sources

Literature

- Taking available lightcurves, not Tc values
- Only full lightcurves, with points before and after transit
- PNR < 2.0 ppth/min

Ground telescopes

- Piwnice, mainly TC60 but also TSC90 recently
- Observatory Sierra Nevada, Spain, 90cm and 150 cm telescopes
- Trebur, Germany, 100 cm telescope
- And other

Data sources

Literature

- Taking available lightcurves, not Tc values
- Only full lightcurves, with points before and after transit
- PNR < 2.0 ppth/min

Ground telescopes

- Piwnice, mainly TC60 but also TSC90 recently
- Observatory Sierra Nevada, Spain, 90cm and 150 cm telescopes
- Trebur, Germany, 100 cm telescope
- And other

TESS

- Manual photometry
- All selected systems observed in TESS
- Up to 20 transits per sector

TrES-3

Jan Golonka

TTV 2022/2023

12.09.2023

æ

< □ > < □ > < □ > < □ > < □ >

10 / 13

TrES-3

Linear over quadratic, Q > 2E+5 with 95%, Q = 4E+5 from theory says

Jan Golonka

TTV 2022/2023

10 / 13

HAT-P-36

Jan Golonka

TTV 2022/2023

12.09.2023 11 / 13

æ

< □ > < □ > < □ > < □ > < □ >

HAT-P-36

Quadratic over linear, dPer= $5.7E-10\pm1.4E-10$, 4 sigma detection

Jan Golonka

TTV 2022/2023

WASP-135

Jan Golonka

TTV 2022/2023

12.09.2023 12

3

イロト イヨト イヨト イヨト

12 / 13

WASP-135

Linear over quadratic*, Q > 1.6E+4 with 95%, Q = 5E+5 from theory

Jan Golonka

Conclusions

- Testing tidal interactions with Transit Timing Variations of hot Jupiters.
- TrES-3 results still in agreement with theory
- **③** HAT-P-36 results show different mechanism, Q = ?
- WASP-135 early results in agreement with theory

Conclusions

- Testing tidal interactions with Transit Timing Variations of hot Jupiters.
- TrES-3 results still in agreement with theory
- **③** HAT-P-36 results show different mechanism, Q = ?
- WASP-135 early results in agreement with theory

Thank you!