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Plan of the talk

1. Introduction, short GRBSs,
kilonovae, and gravitational
waves

2. Postmerger systems

3. Accretion and outflow
simulations, and kilonova
modeling
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Rapid, bright flashes of
radiation peaking in the
gamma-ray band
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First confirmed progenitor
of short GRB: GW170817

(Abbott et al. 2017)



Short GRBs engines: simulations
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Compact
binary
mergers

NS-NS and NS-BH
(e.g.Korobkin et al.
2012, Rezzolla et al.

Density t=0.295 2014, Paschalidis et
POSt'merger 1000 = d 101 al. 2015, Shibata,
SyStemS - 10 Baumgarte & Shapiro
- _ 400 10° 2000).
FITLa 200 108
: 107

Neutrino-cooled BH accretion
disk with nuclear EOS
10t (e.g., Janiuk et al. 2017, 2019;
S odor - Slegel & Metzger. 2018;
Fernandez et al. 2019)




Disk, wind and jet
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fig. B. Metzger
(Living Reviews in Relativity,
2020).

Potential electromagnetic counterparts of
compact object binary mergers as a
function of the observer viewing angle.

Rapid accretion of a centrifugally
supported disk (blue) powers a
collimated relativistic jet, which produces
a short GRB.

Equatorial outflows contribute to lower-
energy signal.

Both disk wind and jet are powered by
the Central Engine —> black hole
accretion disk.



Kilonova

NS-NS eject material rich in heavy
radioactive isotopes.

Can power an electromagnetic signal
called a kilonova

(e.g. Li & Paczynski 1998; Tanvir et al. 2013, Berger 2016)

Dynamical ejecta from compact
binary mergers, M~ 0.01 Mg,
can emit about 10%°-10% erg/s in a
timescale of 1 week

Subsequent accretion can provide
bluer emission, if it is not absorbed

by precedent ejecta (ranaka, 2016, Berger
2016, Siegel & Metzger 2017)
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GW 170817

NGC 4993 55517a
April 28, 2017 August 17, 2017
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Rapidly fading electromagnetic
transient in the galaxy NGC4993,
was spatially coincident with
GW170817 and a weak short
gamma-ray burst (e.g., Smartt et al.
2017; Zhang et al. 2017, Coulter et
al. 2017)

Double neutron stars formed a
black hole after their merger.
During the inspiral phase,
gravitational waves were
produced.

After the merger, gamma-ray
telescopes observed a burst of
energy.

The time delay of 1.7 s may be
associated with formation of
HMNS




Blue and red kilonova lightcurves
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Schematic idea of the GW170817
system in the post-merger phase
(Murguia-Berthier et al. 2017).
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Blue and the red light from a
kilonova, compared to observational
data for the transient SSS17a,
associated with GW170817

(Kilpatrick et al. 2017).



Kilonova colors

M= 1072 Mg, vo = 0.1 ¢ M = 107° Mg, vy = 0.1 c
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Rapid neutron
capture

Beta decay to

neutron-heavy nucleus new element

Matter is neutronized, Y _= np/(nID +n ) <0.5.
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HARM= High Accuracy Relativistic MHD

Equation of State of ideal gas with analytic
form was used in original code (Gammie et al.
2003).

Fermi gas EOS is computed numerically and
tabulated during simulation with

P(p, T), e(p,T) implemented in
(Janiuk et al. 2017, ApJ; Janiuk 2019, ApJ).

0

= 0.

Publicly available code version

https:/Igithub.com/agnieszkajaniuk/
HARM_COOL

Hyperaccretion: rates of 0.01-a
few M//s. Nuclear temperatures
and densities

Plasma composed of free n, p,
e+, e— pairs, and He nuclei

Nuclear reactions: electron-
positron capture on nucleons, and
neutron decay (Reddy, Prakash &
Lattimer 1998)

Neutrino absorption & scattering:
two-stream approximation (Di
Matteo et al. 2002)

Neutrino emissivity t=0.295
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Outflow disk wind

Density t=0.000 Density t=0.295
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Code HARM-COOL (Janiuk, 2019, ApJ, 882, 163)
follows the wind outflow, using tracer particle technique
(Wu et al. 2016; Bovard & Rezzola 2017).

Tracers are Lagrangian particles, which store data about density, velocity, and
electron fraction in the outflow.

(see talk by Gerardo Urritia, later today)



Nucleosynthesis in disk wind
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Code SkyNet, provides a nuclear reaction network; Lippuner & Roberts (2017).
Publicly available, with a user-friendly python interface.

r-process nucleosynthesis is calculated by postprocessing of tracer data, to
obtain chemical evolution of the wind



Disk wind properties
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The disk launch fast wind outflows (v=c ~ 0.11 — 0.23) with a broad range of
electron fraction Ye ~ 0.1 — 0.4. Mass loss via unbound outflows is between 2% and
17% of the initial disk mass. The outflow composition is sensitive to engine
parameters: BH spin and magnetisation of the disk
More magnetized disk produce faster outflows. Smaller BH spins produce more
fraction of neutron rich ejecta
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Populations of kilonova progenitors
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F. H. Nouri, A. Janiuk & M. Przerwa
(2023, ApJ, 944, 220)

We find strong correlation between
the black hole's spin and ejected
mass.

Drozda et al. (2022) found that only
a fraction (~20%) of BHNS binaries
gain a high BH spin.




Synthetic kilonova lightcurves
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We calculated synthetic kilonova x10% N 00,0820
ligtcurves for a range of BH-disk mass — 5.0.03-200 _3
ratios and range of black hole spin 0 M6.0-0.14-aR0.6
parameters. S x10® |
- [
1x10% |
Our models do not provide direct method
to distinguish between BH-NS and NS- 1x10% |
NS progenitors, but the LC slopes my me E :
affected by progenitor type 1x10° : " " 20
(Kasen et al. 2015). t[day]

Creation of a magnetized and
differentially rotating HMNS with
different lifetimes can also affect the
amount of ejected matter, hence L.C slope

(de Haas et al. 2022).



Kilonova with long GRB

On 11 December 2021, the Fermi GBM triggered and located GRB 211211A
which was also detected by the Swift/BAT (D'Ai et al., GCN 31202).

The GBM light curve consists of an exceptionally bright emission made up of
three separate pulses with a duration (T90) of about 34.3s (50-300 keV) (Mangan
et al., GCN 31210).

GRB 211211A: hybrid event, analo gous HST / WFC3 / F814W + F160W Swift UVOT w2
to GRB 060614.

hard spectrum, short variability
timescale and negligible temporal lag.

3.6-m DOT / band

1h
not locate in any star-forming region and

associacion with supernova is excluded

-
(Troja et al. 2022, Nature).
A kilonova component is identified in
the UV/optical/infrared by spectral *
\\ 10h

analysis (Rastinejad et al., 2022, Nature)
GRB 211211A




Neutrino lightcurves

The neutrino leakage scheme employed
following

Ott et al. (2021)
https://stellarcollapse.org
Is implemented in HARM-COOL-NUC

Three-parameter EOS: ¢(p, T,
Ye); P(psTs Ye)'

A. Janiuk, 2023,
ArXiVv:2303.18129
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Neutrino spectra
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Spectra from 1-D stationary,
simplified NDAF model

(Liu et al. 2015)



Relativistic Astrophysics
group at CTP PAS

- please visit our website.
https://ra.cft.edu.pl/

Accretion disk’s environmental effects on gravitational waves from LISA for extreme mass ratio
black hole binaries

Fatemnch Hosscin Nouri and Agnieszka Janiuk
Center for Theoretical Physics, Polish Academy of Sciences, Al Lotmikow 32/46, 02-668 Warsaw, Poland

The merger of supermassive black holes (BBH) produces mHz gravitational waves (GW). which are po-
tentially detectable by fure Laser Interferometer Space Antenna (LISA). Such binary systems are usually
embedded in an accretion disk environment at the centre of the active galactic nuclei (AGN). Recent sudies
suggest the plasma environment imposes measurable imprints on the GW signal if the mass ratio of the binary
is around q ~ 107 = 107*. The effect of the gaseous environment on the GW signal is strongly dependent
on the disk’s parameters, therefore it is believed that future low-frequency GW detections will provide us with
precious information about the physics of AGN accretion disks. We investigate this effect by measuring the disk

‘ torques on the binary system by modelling several magnetized tori. U IRMHD HARM-COOL code, we
! perform 2D simulations of weakly-magnetized thin accretion disks, with a possible truncation and transition 1o
. advection-dominated accretion flow (ADAF). In our numerical simulations, we study the angular momentum
| transport and turbulence generated by the magnetorotational instability (MRI). We quantify the disk’s effective
L alpha viscosity and its evolution over time. We apply our numerical results 1o estimate the relativistic viscous

- new paper today
ArXiV:2309.06028
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The key conclusion from this plot is that the source seen in the NIR requires an
additional component above the extrapolation of the afterglow (red dashed line),
assuming that it also decays at the same rate. This excess NIR flux
corresponds to a source with absolute magnitude M(J)AB=-15.35 mag at ~7d
after the burst in the rest frame. This is consistent with the favoured range of
kilonova behaviour from recent calculations (despite their known significant
uncertainties), as illustrated by the model lines (orange curves correspond to
ejected masses of 102 solar masses (lower curve) and 10! solar masses
(upper curve), and these are added to the afterglow decay curves to produce
predictions for the total NIR emission, shown as solid red curves). The cyan
curve shows that even the brightest predicted r-process kilonova optical
emission is negligible.



a) False colour image combining optical (F814W,; blue) and near-
infrared (F160W; red and green) HST observations of GRB
211211A, carried out with the Wide Field Camera

3 (WFC3) camera in April 2022 (approximately 4 months after the
burst). Two bright galaxies (G1 at z=0.0762, and G2 at z=0.4587)
and several fainter ones are visible, but no source is detected at the
location of GRB 211211A. The most probable host galaxy is G1, a
low-mass, late-type galaxy. The projected physical offset between
the burst and the centre of the galaxy is approximately 8 kpc, one of
the largest ever measured for a long burst. b,c, The same field is
shown in the UV w2 filter observed by Swift at 1 h after the burst (b),
and in the optical | filter acquired by the 3.6-m DOT/4K x 4K CCD
Imager at 10 h after the burst (c). The solid lines show the slit
position used for optical spectroscopy with Gemini/GMOS-S. The
bright UV counterpart rules out a high-redshift origin, whereas its
rapid reddening is consistent with the onset of a kilonova.



2D simulation results of neutrino-
thm and thick disks
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to heating and cooling by neutrinos. Net rate of neutrino emission computed
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GR MHD with Composition
dependent EOS

0 U(P) = -9, F' (P) + S(P) “

Inversion method test. 2D scheme

log T [K]

Non-trivial transformation between ‘conserved’ and
'primitives’ variables in GR MHD.

— Various inversion schemes tested
(Cf. Slegel 2019) 8 10 2 14
— Finally, we used bracketed root-finding method o9 fiho [gfemd]

of Palenzuela et al. (2015).

Inversion method test. 3D scheme-v1

Three-parameter EOS: ¢(p, T, Y.), P(pP,T, Ye).

In the new code version, we use the Equation of
State adapted from Helmholtz tables, for wider
range of densities and temperatures. We also
employ neutrino leakage (Ott et al. 2021)

log T [K]

4 6 8 10 12 14

Preliminary results: A. Janiuk, 2023, log Rho [g/em3]
ArXiVv:2303.18129
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Conserved variables

Explicit form of primitive and conserved variables, fluxes, and
source terms, is:

P=1[p, BX, i, Y., T]
U(P) = v/=glpu®, Tf+put, T}, B, pYeu]
F'(P) =/—glpu', T/ +pu', T}, (b'u* — b*u'), pYeu']
S(P) = /—g[0, T&r. + Quy, T + Quj, 0, R]

Here B’ = B"/oz —F"is magnetic field, and " = (0, + n*n,)u”
is the projected four-velocity, where the orthognal frame velocity is
n, = [~,0,0,0], n* =[1/a,—f'/a], with lapse a = 1/1/g*, and
shift function ' = —gt /gtt.

The fluid three velocity is then v/ = i' /v = i /aut.



Emission simulations

T m0.00}v0.0S, S1_m0.1v0.3

-18f
 Day-timescale emission comes at optical =
; o-13
wavelengths from lanthanide-free components of gl
the ejecta, and is followed by week-long emission 2

with a spectral peak in the near-infrared (NIR). e I

é ) z-band

neutrino-driven wind j -

hypermassive neutron-rich e : Time [d] 0
neutron star o tidal ejecta
p y  weak J T_m0.001v0.3. S1. m0.1v0.05
I-process -18¢
' Efl(}
) _a
: —g -13 ;// : :
main = s
r-process g r g
_ / é -6 r-band \
Rl S
R K-band
accretion disk 0.1%5 i | )
Time
siitElans black hole )
Monte Carlo radiative transfer software SuperNu _
accretion disk /' GRB jet D001 MO and 0.1 MO in he low-ve and high-Ye.

component, respectively. Top: low-Ye and high-Ye
ejecta speed of 0.05 ¢ and 0.3 ¢, respectively.

_ Bottom: low-Ye and high-Ye ejecta speed of 0.3 c and
Two-component model scheme 0.05 ¢, respectively.
(Korobkin et al. 2021)


https://iopscience.iop.org/article/10.3847/1538-4357/abe1b5#apjabe1b5bib102

Jet interactions with pre- and post-
merger ejecta

In BNS merger, the interaction of a
relativistic jet with the ejecta shapes the  g& ™
structure of outflow and its radiation

properties.

3D simulations show that jet
centroid oscillates around the axis
of the system, due to
Inhomogeneities encountered in the
propagation (Lazzati et al., 2021)

z/c¢ [s]

0.2 04 06 08
Time=1.00003 r/c [s]

The breakout time is comparable to the central engine duration and possibly
a non-negligible fraction of the total delay between the gravitational and
gamma-ray signals. We study this with larger scale, AMR-based simulations.
(Urrutia, Janiuk, et al., 2023, in prep.)
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