Induced star formation towards the HII region RCW120

XLI ZJAZD POLSKIEGO TOWARZYSTWA ASTRONOMICZNEGO Thursday 14th September

> Miguel Figueira Sebastião Postdoctoral fellow

Narodowe Centrum Badań Jądrowych

Collaborators: Annie Zavagno Leonardo Bronfman

Narodowe Centrum Badań Jądrowych National Centre for Nuclear Research ŚWIERK

JRC collaboration partner

Results

Conclusions

Massive stars and feedback ($M > 8 M_{\odot}$)

- Rare (~20 high-mass per 1000 of low-mass stars)
- Short life (a few 10⁶⁻⁷ yrs)

Importance

- Reionization of the universe
- Star Formation Rate
- Chemical enrichment, metallicity

- Feedback
- Stellar winds
- Radiation pressure
- Photoionization
- Supernova

High mass stars feedback strongly modifive their environment and affect the star formation [Krumholz et al., 2014]

The impact on star formation is still an open question (weight, SFR, SFE \rightarrow support/disrupt star formation?)

The RCW 120 H II region

Results

Conclusions

Massive star and H II region [Deharveng et al., 2010]

Miguel Figueira Sebastião

Miguel Figueira Sebastião

The RCW 120 H || region

Conclusions

Observations of feedback effect [Deharveng et al., 2010]

The RCW 120 H II region

Results

The Galactic HII region RCW 120

Properties of RCW 120

- D_{hel} = 1.34 kpc
- Single O8.5V ionizing star
- Massive source at the edge (~ 200 − 300 M_☉)
- Champagne flow (northern part)

Closeby (~ perfectly) spherical Ideal case

Deharveng et al.+09, Zavagno et al.+07,+10, Anderson et al.+12, Figueira et al.+17, Marsh & Whitworth+19 (Submillimeter)

Figueira et al.+18 (ALMA), Zavagno et al.+22 (ArTeMIS), Anderson et al.+14, Figueira et al.+20 (CO)

Kabanovic et al.+21, Luisi et al.+21 (SOFIA)

Kirsanova et al.+14,+19, Torii et al.+15, Walch et al.+15, Mackey et al.+16 (Simulations)

Chen et al.+22 (Magnetic field)

Miguel Figueira Sebastião

The RCW 120 H II region

Results

Atacama Pathfinder EXperiment (APEX) observations

Different star formation mechanisms

Region A \implies Massive young YSOs closer to the ionizing star Region B \implies Low-mass evolved YSOs further from the ionizing star

The RCW 120 H II region

Results ●000

Spatial and velocity distributions

Gas spatial distributions

- Mean velocity: No velocity difference observed / expansion stopped or very slow

- Velocity dispersion: Dynamics is higher towards the center, where stars are forming

- Good correlation gas and dust, where star formation is observed

Mean velocity / Velocity dispersion

Miguel Figueira Sebastião

Physical properties of the clumps A and B

Radiative transfer equation:

$$I_{\nu}(s) = (B_{\nu} - I_0)(1 - e^{-\tau})$$
(1)

We use the radiative transfer equation to estimate the excitation temperature (T_{ex}), the optical depth (τ) and the column density (N)

1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	T _{ex} ¹²	T _{ex} ¹⁸	τ_{13}^{LTE}	τ_{18}^{LTE}	N(¹³ CO) ^{LTE}	N(C ¹⁸ O) ^{LTE}
	(K)	(K)			(cm ⁻²)	(cm ⁻²)
Region A	22.8	24.8	0.7	0.3	2.2×10 ¹⁶	6.5×10 ¹⁵
Region B	20.7	19.9	0.7	0.2	1.3×10 ¹⁶	2.1×10 ¹⁵

- T_{ex} higher towards Region A (closer to ionizing source-star-formation inside)

- ^{13}CO and C^{18}O are optically thin (~ moderately for $^{13}\text{CO})$
- $N(^{13}CO)$ and $N(^{13}CO)$ comparable to other star-forming regions

The RCW 120 H II region

Results ○○●○

The Collect and Collapse process

Comparison between the age of the H \parallel region (t_{dyn}) and the fragmentation time (t_{frag}

Did the fragmentation occur ($t_{frag} \le t_{dyn}$) ? or not ($t_{frag} \ge t_{dyn}$)?

Density of RCW 120: ~1 to 3×10^3 cm⁻³ $t_{dyn} = 0.96 \pm 25$ Myr C&C process is still viable This does not mean that C&C is the major

star-forming mechanism around RCW 120 (open question)

Miguel Figueira Sebastião

Introdu	iction

The Radiation Driven Implosion model

- Ionized Boundary Cloud \implies No Ha but n_e high enough
- PDR through PAHs \implies Yes
- $T_{ex}^{12} > T_{ex}^{18} \Longrightarrow$ Yes but not convincing (22 / 19 K)
- Multiple gas components \implies No but $P_{clump} \sim P_{ion}$
- Cluster of intermediate mass star —> Yes
- Distorsion \implies Yes at 8 μ m and 36 cm
- Old YSOs \implies Yes, no need for Collect, just Collapse

Region B is a good candidate for RDI mechanism

Miguel Figueira Sebastião

Results

Conclusions

- Analysis of ${}^{12}CO(3-2)$, ${}^{13}CO(3-2)$, $C^{18}O(3-2)$ towards two sub-regions of RCW120

- Increase of T_{ex} towards the center of the regions, where stars are forming and a similar increase of velocity dispersion is observed, higher towards Region A where a massive star is forming

- The Collect & Collapse mechanism is a possible mechanism, that would explain the formation of massive cores at the edge of the region

- Region B is a possible candidate for the radiation driven implosion mechanism

Thank you