

The Hubble tension

Dariusz Graczyk CAMK, Toruń

"Early" versus "late" H₀

Planck 2018 results $H_0=67.4 \pm 0.5$ km/s (Planck Collaboration 2020)

Local measurement $H_0=73.0 \pm 1.0$ km/s (Riess+2022)

"Early" versus "late" H₀

Planck 2018 results $H_0=67.4 \pm 0.5$ km/s (Planck Collaboration 2020)

Local measurement $H_0=73.0 \pm 1.0$ km/s (Riess+2022)

Ways to resolve the tension

Ways to resolve the tension

Apparent tension: Cosmology is precise, but not accurate

After Freedman(2021,ApJ,919,16)

The extragalactic distance ladder

The extragalactic distance ladder geometric anchors

The extragalactic distance ladder : geometric anchors - LMC

The eclipsing binary distance to the Large Magellanic cloud (Pietrzyński+2019,Natur,567,200; Araucaria project)

Fig. 1. New relation between surface brightness S_V and $(V - K)_0$ colour. a, Plot of S_V versus $(V - K)_0$ (data points) and fitted line. The r.m.s. scatter on this relation is 0.018

The extragalactic distance ladder : geometric anchors - calibration of Cepheids

Figure 3. Period-mean magnitude relation for the 70 LMC Cepheids with slopes and statistics given in Table 3.

after Riess+(2019,ApJ,876,85; SH0ES)

Period-Mean magnitude Relations from HST LMC Cepheids

Band	Slope ^a	Intercept ^b	Scatter ^b
F555W	-2.76	17.638	0.312
F814W	-2.96	16.854	0.202
F160W	-3.20	16.209	0.104
m _I ^{W,c}	-3.31	15.935	0.085
m_H^W	-3.26	15.898 ^d	0.075

The extragalactic distance ladder - calibration of SN la

The extragalactic distance ladder - calibration of SN la

Riess+(2022,ApJL,934,7)

The extragalactic distance ladder - calibration of SN la

Riess+(2022,ApJL,934,7)

log Period (days)

12 / 17

The extragalactic distance ladder

The extragalactic distance ladder: standardization of SN la

14 / 17

The extragalactic distance ladder: standardization of SN la

The extragalactic distance ladder: summary

Magnitude of *possible* systematic effects present in different rungs of the distance scale

The extragalactic distance ladder: update - JWST

Riess & Breuval (2023)

