

XLI Meeting of Polish Astronomical Society

Exploring the dust content of low surface brightness galaxies: Implications for the LSST survey

Junais Katarzyna Małek

National Centre for Nuclear Research (NCBJ), Warsaw, Poland

Other collaborators:

S. Boissier, A. Boselli, M. Boquien, D. Donevski, B. Epinat, G. Galaz, T. Goto, M. Hamed, S. J. Kim, J. Koda, H. Matsuhara, W. J. Pearson, A. Pollo, G. Riccio, M. Romano, H. Thuruthipilly, P. Weilbacher

14 September 2023

Outline

• Introduction

- → Quick overview of LSST
- → Role of dust and attenuation in galaxies
- → Low surface brightness galaxies (LSBs) and dust

• LSB galaxies in the NEP field

- → Multi-wavelength SED modelling
- → Stellar and dust properties as a function of surface brightness
- Conclusions

Legacy Survey of Space and Time (LSST)

- Upcoming Vera Rubin Observatory in Chile
- 8.4 meter diameter primary mirror
- Observes a large area of the sky (~18000 deg²) in the optical *ugrizy* bands
- Image the full sky every 3 nights
- Deepest optical large sky survey in 10 years (5σ depth of 27.5 mag in *r*-band)

Image credit: Launch Pad Astronomy

Role of dust in galaxies

- Dust is a key component in a galaxy's evolution (important in the cycle of star formation)
- Affects the observations, especially at shorter wavelengths known as attenuation
- Attenuation is a crucial quantity to consider while estimating galaxy properties
- Using LSST data alone, without a prior on attenuation, overestimates the SFR by ~1 dex (Riccio+2021)

Dust attenuation of an SED

What is a Low surface brightness galaxy?

Low surface brightness galaxy

=

Galaxy that emit much less light per unit area than "normal" galaxies.

Importance of LSB galaxies

- LSBs generally defined as galaxies with average surface brightness μ_{e, r} > 23 mag arcsec⁻²
- LSBs may account up to 50% (or more) of the galaxy population (Martin+2019).
- Only limited studies on LSBs due to their faintness
- Vast discovery space for LSBs with LSST

Galaxy population

6

Dust content of LSBs

- LSBs are generally considered to be "dust poor" (Liang+16; Hinz+07; Rahman+07)
- Mostly undetected in IR wavelengths
- Studies only based on either small samples or shallow data
- Need to study attenuation as a function of surface brightness

A large sample of LSBs and HSBs with deep data: NEP field Junais et al., A&A, 676, A41 (2023)

- The North Ecliptic Pole (NEP) wide field contains a large set of deep multi-wavelength data
- NEP optical bands (*ugrizy*) are close to the 10 year LSST depth *ugrizy* (5σ): 25.4, 28.6, 27.3, 26.7, 26.0, 25.6 mag
- Sample selection:
 - HSC+Megacam *ugrizy* detected sources
 - *z* < 0.1 (photo-*z* from Huang+2020)
 - **1631** galaxies (1003 LSBs, 628 HSBs)
- First time to perform a large statistical study of dust in LSBs

Crossmatch with multi-wavelength data

- Compiled multi-wavelength counterparts for the sample (33 filters):
 - GALEX (FUV, NUV)
 - CFHT (*u*, *Y*, *J*)
 - HSC (grizy)
 - KPNO/FLAMINGOS (*J, H*)
 - \circ AKARI (2-24 μ m)
 - o *Spitzer*/IRAC (3.5, 4.5 μm)
 - \circ ~ WISE (3-22 $\mu m)$
 - *Herschel/*PACS (100, 160 μm)
 - Herschel/SPIRE (250, 350, 500 μm)
- A large fraction of LSBs do not have MIR/FIR detections -> we use upper limits to constrain range

Spectral energy distribution fitting

- Used the CIGALE SED fitting tool (Boquien+2019)
- Works with energy balance: UV radiation absorbed by dust is re-emitted in IR
- Used 5σ upper limits for non-detection in IR -> crucial for LSBs
- Assumed BC03 SSP, delayed star formation, Dale+2014 dust emission models
- Obtained M_{star} and A_{V}

Surface brightness vs stellar mass surface density

- Surface brightness and stellar mass surface density (Σ_{star}) are related by mass-to-light ratio (M/L)
- We explored this relation for our sample.
- Mostly follow a linear trend, except at faintest end with a flattening in Σ_{star}
- About 40 galaxies are 3σ outliers (M/L_r > 3)
- Compared with HSBs from Herschel Reference Survey (HRS; Boselli+2010)

$$\Sigma_{
m star} = rac{M_{
m star}}{2\pi R_e^2}$$

Attenuation vs surface brightness

- Attenuation steeply declines with stellar mass surface density, but with a large scatter
- Majority of the LSBs have a low attenuation ($A_v < 0.1$ mag)
- About 4% of them have significant attenuation (mean $A_v \sim 0.8$ mag)
- They are the 3σ outliers of $\mu_{e,r}$ Σ_{star} relation
- Could be used as a method to identify dust-rich LSBs.

Outliers after correcting for attenuation

- All of them remain LSBs even after correcting the surface brightness for attenuation
- About 50% falls within the 3σ range after the correction
- Outliers have similarity with giant LSBs (e.g., Malin 1, UGC 6614)

Conclusions

- Dust attenuation plays an important role in the observation of galaxies
- Low surface brightness galaxies have more varied dust content than previously thought
- About 4% of LSBs are dust-rich, making them fainter than their intrinsic value
- Upcoming LSST will observe thousands of LSBs require proper estimation of attenuation
- Use the knowledge on LSBs from this work to analyse future observations

Thank you

Extra slides

Basic parameters

Radial profiles and surface brightness

- Extracted non-parametric *r*-band radial profiles using the AutoProf tool (Stone+2021)
- Obtained effective radii and average surface brightness (µ_{e,r})
- With a $\mu_{e,r}$ cut of 23 mag arcsec⁻²
 - LSBs: 1003
 - HSBs: 628

SED fit inputs

Table 1: Input parameters for CIGALE SED fitting

Model and Input parameters	Values
Star-formation history: sfhdelayedbq (Ciesla et al. 2017)	
e-folding time of the main stellar population model (Myr)	500, [1000,10000] with a spacing of 1000
Age of the main stellar population in the galaxy (Myr)	[10000,13000] with a spacing of 500
Age of the SER after and before the burst/quench (Myr)	100, 200, 400, 000, 800, 1000
Ratio of the SFR after and before the burst-quenen (Wiyi)	0,0.2,0.4,0.0,0.8,1,1.2,1.4,1.0,1.8,2
Stellar population: bc03 (Bruzual & Charlot 2003)	
Initial mass function	Chabrier (2003)
Metallicity	0.008
Dust attenuation : dustatt_modified_starburst (Calzetti et al. 2000; Leitherer et al. 2002)	
$E(B-V)_{\text{lines}}$, the color excess of the nebular lines (mag)	0, [0.001,2] log sampled with 40 values
Reduction factor to compute $E(B - V)_{\text{continuum}}$	0.44
Amplitude of the UV bump	0.0
Slope delta of the power law modifying the attenuation curve	0.0
Extinction law for attenuating emission lines flux	Milky Way (Cardelli et al. 1989)
R _V	3.1
Dust emission: dale2014 (Dale et al. 2014)	
AGN fraction	0.0
Slope of the interstellar radiation field (α)	2.0

Data and upper limits

Table 1. Summary of the multiwavelength data sets: the detection limits.

Data	Band	Effective wavelength (µm)	(5σ) detection limit AB/μJy	Data	Band	Effective wavelength (µm)	(5σ) detection limit AB/µJy
S-	N2	2.3	20.9/15.4	3		1030303030 20203020	19100100100000000000000000000000000000
	N3	3.2	21.1/13.3	KPNO/FLAMINGOS	J	1.2	21.6/8.32
AKARI/IRC	N4	4.1	21.1/13.6	5.1 deg ² (Jeon et al. 2014)	Н	1.6	21.3/10.96
NEP-Wide survey	S7	7	19.5/58.6	and the second se			
5.4 deg ²	S9 W	9	19.3/67.3	CFHT/WIRCam	Y	1.02	23.4/1.58
(Kim et al. 2012)	S11	11	19.0/93.8	0.7 deg ² (Oi et al. 2014)	J	1.25	23.0/2.29
	L15	15	18.6/133		$K_{\rm s}$	2.14	22.7/3.02
	L18W	18	18.7/120	Color of the Arc	TD ACL	26	21.9/7.45
	L24	24	17.8/274	Spitzer/IKAC	IRACI	3.6	21.8/6.45
		0.47	28 (10.01	7 deg^2 (Nayyeri et al. 2018)	IRAC2	4.5	22.4/3.95
6-1	g	0.47	28.6/0.01	0.4 deg ² (Jarrett et al. 2011)	IRAC3	5.8	20.3/27.0
Subaru/HSC	r	0.61	27.3/0.04		IRAC4	8	19.8/45.0
5.4 deg ²	i	0.76	26.7/0.08		3371	2.4	10 1/10
(Oi et al. 2020)	z	0.89	26.0/0.14		W I	3.4	18.1/18
	у	0.99	25.6/0.21	WISE	W2	4.6	17.2/23
CELEBRA - Dime	32	0.26	25 410 25	(Jarrett et al. 2011)	W3	12	18.4/139
CFH1/MegaPrime	и	0.56	25.4/0.25		W4	22	16.1/800
3.6 deg ² (Huang et al. 2020)				u i uni coh	G	100	11746
	u*	0.39	26.0/0.16	Herschell/PACS"	Green	100	14.7/4.6 mJy
CFHT/MegaCam ^a	g	0.48	26.1/0.13	0.44 deg ² (Pearson et al. 2019)	Red	160	14.1/8.7 mJy
2 de g ² (Hwang et al. 2007)	r	0.62	25.6/0.21	<i>Herschell</i> /SPIRE ^c 9 deg ² (Pearson et al. 2017)	PSW	250	14/9 () mJy
0.7 deg ² (Oi et al. 2014)	i	0.75	24.8/0.39		DMW	250	14.277.5 m Ju
	Z	0.88	24.0/0.91		PIVIW	330	14.2/7.5 mJy
					PLW	500	13.8/10.8 mJy
Maidanak/SNUCam	B	0.44	23.4/1.58	SCUBA-2/NEPSC 2^d 2 deg ² (Shim et al. 2020)	850	850	10.23 mJy
4 deg ² (Jeon et al. 2010)	R	0.61	23.1/2.09		0.00	0.00	1.0-2.5 HD y
	I	0.85	22.3/4.36				

SED fit results

sSFR vs sigmastar

Optical vs FIR fit

Related works of our team

Estimation of dust attenuation

- Two commonly used methods:
 - SED modelling: UV + optical + IR (photometry)
 - Balmer decrement: Hα/Hβ ratio (spectroscopy)
- We don't always have access to such high quality data

Factors influencing attenuation

- Stellar mass attenuation relation
 - Generally low mass galaxies tend to have low attenuation (large scatter)
- Dust-to-star geometry, galaxy morphology (Buat+2019; Hamed+2023)
 - Possible dependance on surface brightness
- For a fixed stellar mass there is a large scatter (~3 dex) in surface brightness (Jackson+21)

<u>Our Focus</u>

Attenuation - surface brightness relation Low mass, low surface brightness galaxies

Infrared luminosity

- LSBs have lower L_{IR} than HSBs
- The specific IR luminosity (L_{IR} per stellar mass) is mostly flat for both LSBs and HSBs
- Implies LSBs and HSBs at a fixed stellar mass do have comparable L_{IR}
- Many of 3σ outliers have high specific L_{IR}

MUSE observation of the giant LSB Malin 1

Junais et al. (submitted)

- VLT/MUSE spectroscopic data recently obtained (PI: Gaspar Galaz)
- Measured attenuation using Balmer decrement
- A_v up to 1 mag (mean $A_v \sim 0.4$ mag)
- Hundreds of Malin 1-like giants will be observed with LSST

CFHT u,g,i image