Radio transient phenomenon the moment of birth of the radio source?

Magdalena Kunert-Bajraszewska

UMK

in collaboration with: Aleksandra Wołowska (UWM, Poland) Kunal Mooley (Caltech, NRAO, USA) Preeti Kharb (NCRA-TIFR, India) Amy Kimball (NRAO, USA) Daniel Stern (Caltech, USA) Kristina Nyland (NRL, USA) Aneta Siemiginowska (SAO, USA) Dorota Kozieł-Wierzbowska (UJ, Poland) Aleksandra Krauze (UMK, Poland)

UNIWERSYTET MIKOŁAJA KOPERNIKA W TORUNIU

Institute of Astronomy, Nicolaus Copernicus University, Toruń, Poland

Questions:

- What ignites the radio activity?
- Can we detect and trace the birth of radio activity (i.e. the transition from radio-quiet to radio-loud state) ?

Motivation of our studies

Questions:

- What ignites the radio activity?
- Can we detect and trace the birth of radio activity (i.e. the transition from radio-quiet to radio-loud state) ?

What we need to answear them:

- Knowing how to identify a young radio source.
- Sensitive time domain radio surveys.
- A statistically significant sample of objects.
- Follow-up deep multiwavelength observations in order to classify and characterize correctly the transient object.

The phase space of slow extragalactic radio transients

What we found

Distinct population of AGNs not detected as radio sources in any of the previous radio surveys.

Sources that transitioned from radio-quiet to radio-loud state

What we found

Distinct population of AGNs not detected as radio sources in any of the previous radio surveys.

The folow up multi-epoch and multi-frequency study: Radio: VLBA, VLA, GMRT X-rays: Chandra, XMM-Newton Infrared: WISE Optical: SALT, SDSS, Keck, Palomar

Kunert-Bajraszewska+2020

- Discovered as a radio source on 12.12.2013.
- Core-jet radio structure.
- It went through the short gigahertz-peaked spectrum phase at the beginning of its activity and has now stabilized its flux density at the level of a few mJy.
- AGN with $10^9 M_{\odot}$ black hole.
- Transition to the radio-loud mode coincides with changes of its UV-optical continuum and the low ionization Mg II broadline.

photometric recording

photometric recording

photometric recording

photometric recording

Summary

- The discovered radio sources might have transitioned from a radio-quiet to radioloud state either as a result of the increase in radio power or its ignition after > 5–20 years of absence.
- Their radio characteristic indicate that they are in early life stage.
- Changes in the accretion disk happen on the much shorter timescales than the lifetime of the newborn radio source.
- There are differences in the behavior and development of the radio structure and spectrum of galaxies and quasars.

More data in the optical-UV and X-ray regime is needed.

The work on other, new samples and deep multi - frequency data is in progress.

Thank you!

UNIWERSYTET MIKOŁAJA KOPERNIKA W TORUNIU

Institute of Astronomy, Nicolaus Copernicus University, Toruń, Poland

The life cycle of radio-loud AGN

$GPS (<1kpc) \rightarrow CSS (<20kpc) \rightarrow FRI/FRII(>20kpc)$

Gigahertz Peaked **S**pectrum **C**ompact **S**teep **S**pectrum

Fanaroff-Riley I Fanaroff-Riley II

changes in radio structure

changes in radio spectrum

The folow up multi-epoch and multi-frequency study: Radio: VLBA, VLA, GMRT X-rays: Chandra, XMM-Newton Infrared: WISE Optical: SALT, SDSS, Keck, Palomar