Investigating the Early Universe:

A Study of Dusty Star-Forming Galaxies at high redshift to understand the Baryonic Evolution

Prasad Sawant National Centre for Nuclear Research, Warsaw, Poland PhD Student, Project DINGLE (PI. Ambra Nanni)

Collaborators: Ambra Nanni Michael Romano

prasad.sawant@ncbj.gov.pl

Introduction

A hidden (and dusty) Universe

Observed by Far-InfraRed Absolute Spectrophotometer (FIRAS) aboard the

Cosmic Background Explorer (COBE) satellite.

Implied that the Universe emits almost same energy density as UV/Optical domain

as in Infrared domain.

Herschel, ALMA and NOEMA detected galaxies in sub-mm domains with

increased resolutions.

Credits: ESO/IRAS

P.

Cosmic History

Time evolution of physical parameters of

Cosmic History

Time evolution of physical parameters of galaxies.

Existence of "main - sequence" of galaxies.

Cosmic History

Time evolution of physical parameters of galaxies.

Existence of "main - sequence" of galaxies.

Indicates a order in nature and not an inherent stochasticity.

Dusty Star Formation in Early Universe

• A clumpy structured universe from a

smoothly distributed matter.

- Ultra luminous IR sources in early universe.
- Dusty Star Forming Galaxies (DSFGs) contributing to the cosmic SFRD.

Trouble in the Early Universe?

- No models are able to match the observed number counts and inferred physical properties simultaneously.
- Scaled up versions of extreme galaxies in local universe?

Baryonic evolution

Evolutionary Models

• Evolutionary models help us to probe the baryonic processes and test our models with observations.

- Enrichment of ISM
- Dust Growth and Destruction
- Inflows/Outflows

Evolutionary Models

• Evolutionary models help us to probe the baryonic processes and test our models with observations.

- Enrichment of ISM
- Dust Growth and Destruction
- Inflows/Outflows

Evolutionary Models

• Evolutionary models help us to probe the baryonic processes and test our models with observations.

- Enrichment of ISM
- Dust Growth and Destruction
- Inflows/Outflows

Credits: Remy-Ruyer+15

Motivation

- Galaxies in early universe have proven to be a significant challenge for theoretical models of galaxy formation.
- Are we able to explain the heavy dust content at the beginning of baryon cycle in these galaxies?

Methodology

A Panchromatic view of Galaxy

Credits: M. Hamed

The Dust Formation Rate Diagram

Credits: Sawant et. al (in prep)

SPT (a different case)

- Strongly lensed and high z galaxies.
- Peak in submillimetre domains.
- No resolved optical counterparts.
- No information on the stellar content of galaxies.

Stellar Mass (the other ways*)

Using empirical relation between SFR, Redshift and Stellar Mass.

Derived from "main - sequence" of galaxies.

Based on the studies done in Speagle 2014.

of $\widehat{\underbrace{\xi}}_{3.4}$ $\log \psi(M_*, t) = (0.84 \pm 0.02 - 0.026 \pm 0.003 \times t) \log M_*$ $- (6.51 \pm 0.24 - 0.11 \pm 0.03 \times t), (28)$

3.8

*Will be an upper limit on the stellar mass estimate.

Stellar Mass (the other ways*)

Using empirical relation between SFR, Redshift and Stellar Mass.

Derived from "main - sequence" of galaxies.

Based on the studies done in Speagle 2014.

*Will be an upper limit on the stellar mass estimate.

Stellar Mass (the other ways)

Using the empirical relation using the depletion timescales.

Derived from molecular gas estimates using different gas tracers.

Based on the studies done in Tacconi 2018.

$$\log (t_{depl}(z, sSFR, M_*, R_e)) = A_t + B_t \times \log (1+z) + C_t \times \log (\delta MS) + D_t \times \log (\delta M_*) + E_t \times \log (\delta R)$$

Stellar Mass (the other ways)

Using the empirical relation using the depletion timescales.

Derived from molecular gas estimates using different gas tracers. Based on the studies done in Tacconi 2018.

Results

The Dust Formation Rate Diagram

The Dust Formation Rate Diagram

With Evolutionary Models (IN PROGRESS)

Credits: Sawant et. al (in prep) 30

With Evolutionary Models (IN PROGRESS)

Credits: Sawant et. al (in prep) 31

Future Prospects

- Testing of Top Heavy IMF hypothesis in SED fitting using CIGALE.
- Follow-up observations using JWST of a sample of SPT galaxies to have better constraints.
- Modeling of 3um feature observed in one of the SPT galaxy (Spilker+23).

Summary

- Understanding the dust build up at the peak of star formation density.
- Derived sSFR & sMDust values to probe the baryonic evolution in different types of galaxies.
- Use of empirical relations to derive the stellar mass for SPT galaxies.
- Study of the galaxies and relevant evolutionary models.

Thank You