

Interstellar Medium Surrounding the Heliosphere

Paweł Swaczyna

Space Research Centre of the Polish Academy of Sciences (CBK PAN)

pswaczyna@cbk.waw.pl

Previously at: Department of Astrophysical Sciences, Princeton University

119 Outer Heliosphere Guest Investigator Program)

presented research was supported by NASA (grant

41st meeting of Polish Astronomical Society, Toruń, 11-15 September 2023

Our interstellar neighborhood

NASA/Goddard/Adler/U. Chicago/Wesleyan

Absorption by interstellar clouds

Galactic (G) and anti-galactic (AG) clouds

Interstellar neutral atoms in the heliosphere

Ulysses observations

Witte et al. (1993, AdSpR 13, 121)

ecliptic longitude ecliptic latitude

 \mathbf{v}_{∞} : 26.0 ± 1.0 km/s $\lambda_{\infty}: 72.0^{\circ} \pm 2.4^{\circ}$ $\beta_{\infty}:-2.5^{\circ}\pm2.7^{\circ}$ T_{∞} : 6700 ± 1500 K

Lallement & Bertin (1992)

The Sun is in a very small patch of gas, undetected by visible and UV measurements, just between the two $G(29.4 \text{ km s}^{-1})$ and $AG(25.7 \text{ km s}^{-1})$ clouds.

LIC (AG cloud) properties.

"

Redfield & Linsky model of the LISM

41st PTA meeting, 12 Sept 2023

Paweł Swaczyna: Interstellar Medium Surrounding

Complex of Local Interstellar Clouds (CLIC)

 184.5 ± 1.9

41st PTA meeting, 12 Sept 2023

G.....

21

 29.6 ± 1.1

Paweł Swaczyna: Interstellar Medium Surrounding

 -20.6 ± 3.6

1.3

in the heliosphere

Detection of ISN atoms on IBEX

Fuselier et al. (2009, SSRv 146:117)

Observations of ISN wind by IBEX

Charge exchange collisions:

- Losses to primary population
- Production of secondary population
- ~5% of He atoms, ~50% of H atoms
- Mostly resonant collisions

• Elastic collisions:

- Slowdown and heating
- Angular scattering of colliding particles
- Most atoms undergo multiple collisions
- Collisions with multiple species

Elastic collision differential cross sections

Swaczyna et al. (2021, ApJL 911:L36) $E_{\rm CM} = 0.01 \, {\rm eV}, \, v_{\rm He^{0/+}} = 1. \, {\rm km \, s^{-1}}, \, v_{\rm H^{0/+}} = 1.5 \, {\rm km \, s^{-1}}$ 2775 $(\theta) d\sigma(\theta) d\theta$ (cm²/rad) $200^{-10} 0 (\theta) d\theta$ (cm²/rad) $10^{-12} 0 0^{-12} 0^{-12}$ He \leftarrow Collisions of He atoms with H⁺, He⁺, H⁰, and He⁰ H⁰ - He⁰ 10⁻¹⁵ 200 100 0 10⁻¹⁶ 50 $E_{\rm CM} = 0.1 \text{ eV}, v_{\rm He^{0/+}} = 3.1 \text{ km s}^{-1}, v_{\rm H^{0/+}} = 4.9 \text{ km s}^{-1}$ — H⁺ 2^{-12} 273 sin(θ) d σ (θ)/d θ (cm²/rad) 10^{-12} 10⁻¹¹ 10^{-16} 10⁻¹⁷ 10^{-16} 10⁻¹⁷ 10^{-17} He 0 0.20 All collisions cm²/rad) $E_{\rm CM}$ = 1 eV, $v_{\rm He^{0/+}}$ = 9.8 km s⁻¹, $v_{\rm H^{0/+}}$ = 15.5 km s⁻¹ 4.314 ± 0.007 - H* - He 0.15 Probability – He⁰ -50 0 50 0.10 10⁻¹⁵ $2\pi \sin(\theta) d\sigma(\theta)/d$ Most 10⁻¹⁶ 0.05 likely are 10⁻¹⁷ small 0.00 45 90 135 2 6 8 12 0 180 0 4 10 angles θ_{CM} (°) Number of collisions in OHS

41st PTA meeting, 12 Sept 2023

Filtration with momentum transfer

Swaczyna et al. (2023, ApJ 943:74)

Influence of interstellar conditions

Swaczyna et al. (2023, ApJ 953:107)

Derivation of interstellar conditions

Swaczyna et al. (2023, ApJ 953:107)

Linear interpolation of modeled flux:

p – parameters describing interstellar conditions

Fitting with χ^2 minimization:

Best fit parameters

- without angular scattering effects
 - speed: 26.20±0.17 km s⁻¹
 - inflow direction: (255.58°±0.19°, 5.10°±0.15°)
 - temperature: 8010±110 K
 - He⁺ density: (9.9±0.7)×10⁻³ cm⁻³
- with angular scattering effects
 - speed: 26.63±0.17 km s⁻¹
 - inflow direction: (255.73°±0.19°, 5.04°±0.15°)
 - temperature: 7350±110 K
 - He⁺ density:

(9.7±1.2)×10⁻³ cm⁻³

Interstellar clouds vs ISN He flow in the heliosphere

			Speed v (k	(m s ^{−1})		
		24	26	28		30
	5000			·		
	Temperature 7 (K) 0000 0000 (K)		ц <mark>I</mark> В	EX		<u> </u>
	ٽ _{–22}					
0	81 – 18 20 – ale 20			+		G
0	61- 10			· · · ·	т	
)0	() −12 () −12 () −14	LIC	JB	EX		
re	182 		<u> </u>	: : : :		
	100 alactic 181 galactic		IB	EX ⊢	(G
	881 and 186	LIC			т	
	<u></u> 190	Ţ				

updated from Swaczyna et al. (2022, ApJL 937:L32)

Cloud	Speed (km s⁻¹)	Galactic long. (°)	Galactic lat. (°)	Temperature (K)
LIC	23.84±0.90	187.0±3.4	-13.5±3.3	7500±1300
G Cloud	29.6±1.1	184.5±1.9	-20.6±3.6	5500±400
IBEX	26.63±0.17	183.6±0.2	-14.9±0.2	7350±110

A turbulence in the LIC? – Very unlikely

updated from Swaczyna et al. (2022, ApJL 937:L32)

Mixed Interstellar Cloud Medium (MICM)

updated from Swaczyna et al. (2022, ApJL 937:L32)

Conservation laws for mixed medium:

 $M_{\rm MICM} = M_{\rm LIC} + M_{\rm G}$

 $M_{\rm MICM} \boldsymbol{u}_{\rm MICM} = M_{\rm LIC} \boldsymbol{u}_{\rm LIC} + M_{\rm G} \boldsymbol{u}_{\rm G}$

 $\boldsymbol{u}_{\text{MICM}} = \xi \boldsymbol{u}_{\text{LIC}} + (1 - \xi) \boldsymbol{u}_{\text{G}}$

$$\xi = M_{\text{LIC}}/M_{\text{MICM}}, 1 - \xi = M_{\text{G}}/M_{\text{MICM}}$$

 ξ - mixing parameter

Hypothesis	ξ	k	χ ²	AIC
LIC	1	0	10.36	10.36
G Cloud	0	0	9.98	9.98
MICM	0.54±0.13	1	2.07	3.60

AIC strongly prefers the MICM model

Model of mixing clouds

Swaczyna et al. (2022, ApJL 937:L32)

Illustrative model: LIC and G cloud modeled as spherical bodies.

 Two know lines of sight w/ average ISN H density >0.13 cm⁻³:

AD Leo: 0.19 cm⁻³ and HD 82558: 0.20 cm⁻³

 Lenticular shape of MICM → increased density along the great circle about the axis between LIC and G cloud centers

Time evolution of MICM

41st PTA meeting, 12 Sept 2023

Paweł Swaczyna: Interstellar Medium Surrounding

105,000 yr

Ш

100

MICM

Su

5,000 yr

П

0

–6,000 yr

Sun in G Cloud

Future

Interstellar Mapping and Acceleration Probe

Launch scheduled in 2025

- Next generation ISN atom detector placed on a pivot platform
- Greater flexibility in imaging the ISN population distribution functions

Interstellar Probe Concept (possible launch in 2030s)

- First dedicated mission for interstellar medium study: >350 au in 50 years
- In situ and remote observations
- Multigenerational effort

Summary

Takeaway message:

- Synergy between direct observations of interstellar atoms and observations of absorption lines from interstellar material near the Sun enables detailed study of the nearest ISM.
- Interstellar flow derived near the Sun is consistent with an almost 50/50 mixture of the two nearest interstellar clouds → the Sun is inside a mixing region.

Outlook:

- Further observations of absorption lines with the Hubble Space Telescope should allow for better constrain of the mixing region (additional observation time granted in HST Cycle 31).
- The next generation ISN detector (IMAP-Lo) should give better insight into non-equilibrium distribution in the nearby interstellar medium.
- These observations may pave the path for the Interstellar Probe mission, which would be the first humankind mission dedicated to in situ observation of interstellar medium.

Pickup ions and abundance of ISN hydrogen

- Interstellar neutral \rightarrow Ionization \rightarrow Pickup ions
- Pickup ions accumulate in the solar wind
- Characteristic filled shell distribution
- Measured by Solar Wind Around Pluto (SWAP) on New Horizons

