Observing stellar mergers

Tomek Kamiński

Nicolaus Copernicus Astronomical Center Polish Academy of Sciences Toruń, Poland

with: R. Tylenda, M. Z. Mobeen, Th. Steinmetz, M. Schmidt, K. Menten, et al.

PTA Toruń 14 Sept. 2023

the great eruption of η Car

some pre-planetary nebulae

(Boomerang)

Blue Ring Nebula

TYC 2597-735-1

the progenitor of SN 1987A

products of mergers of noncompact stars

are common

anomalous Cepheids

protostars OMC1 source *I*

HD 45166

★ chemically peculiar stars
 ★ R –type stars

FK Com stars

★ some blue strugglers
★ hot sub-dwarfs
★ Be & B[e] stars

too weak to be observed after their outbursts

ZTF SLRN-2020 (subluminous red nova, <10 M_{Jup} +1 M_{\odot}) K. De at al. May 2023, *Nature*

star+planet red novae?

Other transients reported: ASASSN-15qi, ASASSN-13db (possibly YSOs)

Nandez et al. 2013 view from above the binary

mergers are associated with mass loss

Pejcha et al. 2017 side view

V4332 Sgr eruption 1994

V838 Mon eruption: 2002

Constraining merger physics:

- masses dispersed
- angular momentum budget
 - stellar rotation/winds
 - disks/torii
 - magnetic fields
 - progenitors

V1309 Sco ~10-15 yr after

Steinmetz et al. 2023 A Steinm

V4332 Sgr eruption in 1994 clone of V1309 Sco

intensity maps

ALMA channel maps one map per each velocity bin

building a 3D model in *Shape* and radiative transfer

3D structure of the source:

- density
- temperature
- velocity / angular momentum

ALMA results for V4332 Sgr:

ALMA

model reconstructed from observations

M^*_{tot} = 0.8 M_{\odot}

2018: line surve bands 3,4,5&6

Molecular ions in CK Vul

rotx = 000° roty = 000° rotz = -17° point symmetry multiple ejections possible jet-type activity possibly younger than 340 yr possibly triple? Companion 0.3 M_o

Kamiński et al. 2020

Kamiński et al 2021

 $E_{kin} = 10^{44-47} \text{ erg}$ (as in red novae) some misclassified preplanetary nebulae can be stellar merger products

Summary

- we can observe stellar collisions in real time
- detailed studies of the geometry of the remnants with interferometers constrain theoretical models of mergers (and of the common envelope phase?)
- Bipolar structures are present in all red nova remnants
 - energy and momentum as in some pre-PNe (similar shaping mechanism?)
 - are some misclassified pre-PNe merger products? (missed red novae)
- Circumstellar shocks are omnipresent and determine the molecular composition
- Mergers likely occur in triple systems

Member of

Scientific Technical Committee, STC

and

European Science Advisory Committee, ESAC (ALMA matters in ESO)

like/dislike ALMA/ESO? talk to me

